Show simple item record

dc.contributor.advisorKingston, Robert
dc.contributor.advisorChurchman, Stirling
dc.contributor.authorTye, Blake Wells
dc.date.accessioned2019-12-11T09:58:21Z
dc.date.created2019-11
dc.date.issued2019-08-20
dc.date.submitted2019
dc.identifier.citationTye, Blake Wells. 2019. Proteotoxicity From Aberrant Ribosome Biogenesis Compromises Cell Fitness. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:42013104*
dc.description.abstractProteins are the workhorses of the cell, carrying out much of the structural and enzymatic work of life. Many proteins function as part of greater assemblies, or complexes, with other proteins and/or biomolecules. As the cell grows and divides, it must double its proteome, which requires synthesis and folding of individual proteins, assembly into complexes, and proper subcellular localization. This is repeated for millions of proteins molecules compromising thousands of potential assemblies, making up a rather tricky set of tasks for cells to carry out simultaneously. The very machine that carries out protein synthesis—the ribosome—is among the most challenging complexes to assemble and one of the most abundant. Each ribosome requires ~80 unique proteins and 4 unique RNAs to be stitched together in an assembly line that spans the nucleus to the cytosol. Intriguingly, there exist many extracellular insults and genetic mutations that compromise the integrity of ribosome biogenesis, but that impact different cell types and cell states with a range of severities. This represents an intriguing paradox, as the null expectation would be that ribosomes would be critically important to all cells. In this work, I sought to identify the mechanism by which disrupting the integrity of ribosome assembly compromises cell fitness using budding yeast as a model organism with exceptional chemical and genetic tools. By using these tools in yeast to perturb diverse stages of ribosome assembly one at a time on very short timescales, I was able to study the most proximal consequences. I found that cells experience a collapse of protein folding homeostasis in conditions that give rise to excess newly-synthesized ribosomal proteins relative to what can be assembled. In detailing this response, I found that cells specifically activate the conserved proteostasis restoration response directed by the transcription factor Heat Shock Factor 1 (Hsf1). In doing so, this work identifies the first such endogenous proteins capable of eliciting Hsf1 activation, and I further explored the possibility that the fate of newly-synthesized proteins may more generally be compromised by other proteotoxic conditions that drive Hsf1 activation. This work implicates protein synthesis in general as a risk for the proteome that may be compromised by various insults, and suggests that the ribosome in particular may be troublesome for rapidly-proliferating cells with high ribosome production.
dc.description.sponsorshipChemical Biology
dc.format.mimetypeapplication/pdf
dc.language.isoen
dash.licenseLAA
dc.subjectribosome
dc.subjectribosome assembly
dc.subjectproteostasis
dc.subjectHsf1
dc.subjectheat shock factor 1
dc.subjecttranslation
dc.subjectprotein synthesis
dc.subjectprotein aggregation
dc.titleProteotoxicity From Aberrant Ribosome Biogenesis Compromises Cell Fitness
dc.typeThesis or Dissertation
dash.depositing.authorTye, Blake Wells
dc.date.available2019-12-11T09:58:21Z
thesis.degree.date2019
thesis.degree.grantorGraduate School of Arts & Sciences
thesis.degree.grantorGraduate School of Arts & Sciences
thesis.degree.levelDoctoral
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy
thesis.degree.nameDoctor of Philosophy
dc.contributor.committeeMemberWinston, Fred
dc.contributor.committeeMemberSpringer, Michael
dc.type.materialtext
thesis.degree.departmentChemical Biology
thesis.degree.departmentChemical Biology
dash.identifier.vireo
dc.identifier.orcid0000-0003-0841-6249
dash.author.emailblakewtye@gmail.com


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record