Show simple item record

dc.contributor.authorVeller, Carl
dc.date.accessioned2019-12-12T08:46:14Z
dc.date.created2019-05
dc.date.issued2019-05-21
dc.date.submitted2019
dc.identifier.citationVeller, Carl. 2019. Essays in Evolutionary Theory. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:42029641*
dc.description.abstractChapter 1 proposes and empirically tests a model for the evolution of long, synchronous flowering intervals in bamboos. Chapter 2 develops a mathematical method for studying the interaction of multiple populations in stochastic evolutionary games. Chapter 3 applies this methodology to antagonistic and mutualistic species interactions, showing that faster evolution is beneficial in antagonisms, but that slower evolution can be beneficial in some mutualisms. Chapter 4 uses a stochastic model of evolutionary games to show that assortment favors the evolution of cooperation under very general conditions, including when Hamilton's rule fails. Chapter 5 uses a simple model and economic intuition to show that the Trivers-Willard hypothesis of sex allocation—mothers in good condition should (i) have more sons and (ii) care more for sons—holds more generally in case (i) than in case (ii). Chapter 6 identifies and mathematically characterizes a novel selective force, induced by genetic drift, operating in transitions between male and female heterogamety. This 'drift-induced selection' favors epistatically dominant sex determining mutations, possibly explaining their observed preponderance. Chapter 7 proposes a new genetic model to explain the rarity of environmental sex determination (ESD) relative to genetic sex determination (GSD), based on the inevitable coupling of sex-biasing alleles (e.g., of genes underlying temperature thresholds) and 'sexually antagonistic' alleles (which increase fitness in one sex but reduces fitness in the other). Chapter 8 proposes and implements a new metric for genome-wide recombination, rbar, that takes into account the positions of crossovers, as well as independent assortment of homologs. Chapter 9 discovers a deeply-conserved form of crossover patterning: the number of crossovers covaries positively across the chromosomes within individual meiotic nuclei. Crossover covariation causes an increase in the frequencies of gametes with either many or few crossovers, which population genetic modelling shows to be advantageous in a fluctuating environment.
dc.description.sponsorshipBiology, Organismic and Evolutionary
dc.format.mimetypeapplication/pdf
dc.language.isoen
dash.licenseLAA
dc.subjectevolution
dc.subjectevolutionary theory
dc.subjectgame theory
dc.subjectevolutionary game theory
dc.subjectpopulation genetics
dc.subjectsex
dc.subjectevolution of sex
dc.subjectrecombination
dc.subjectsex determination
dc.subjectTrivers-Willard hypothesis
dc.subjectbamboo
dc.titleEssays in Evolutionary Theory
dc.typeThesis or Dissertation
dash.depositing.authorVeller, Carl
dc.date.available2019-12-12T08:46:14Z
thesis.degree.date2019
thesis.degree.grantorGraduate School of Arts & Sciences
thesis.degree.grantorGraduate School of Arts & Sciences
thesis.degree.levelDoctoral
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy
thesis.degree.nameDoctor of Philosophy
dc.contributor.committeeMemberNowak, Martin
dc.contributor.committeeMemberHaig, David
dc.contributor.committeeMemberHartl, Daniel
dc.contributor.committeeMemberKleckner, Nancy
dc.contributor.committeeMemberPierce, Naomi
dc.type.materialtext
thesis.degree.departmentBiology, Organismic and Evolutionary
thesis.degree.departmentBiology, Organismic and Evolutionary
dash.identifier.vireo
dc.identifier.orcid0000-0003-0629-4188
dash.author.emailcarl.veller@gmail.com


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record