Show simple item record

dc.contributor.advisorHarris, Joseph D.
dc.contributor.advisorBejleri, Dori
dc.contributor.advisorFedorchuk, Maksym
dc.contributor.authorHan, Changho
dc.date.accessioned2019-12-12T09:02:31Z
dc.date.created2019-05
dc.date.issued2019-05-09
dc.date.submitted2019
dc.identifier.citationHan, Changho. 2019. Stable log surfaces, trigonal covers, and canonical curves of genus 4. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:42029707*
dc.description.abstractWe describe a compactification of the moduli space of pairs $(S, C)$ where $S$ is isomorphic to $\PP^1 \times \PP^1$ and $C \subset S$ is a genus 4 curve of class $(3,3)$. We show that the compactified moduli space is a smooth Deligne-Mumford stack with 4 boundary components. We relate our compactification with compactifications of the moduli space $\mathcal M_4$ of genus 4 curves. In particular, we show that our space compactifies the blow-up of the hyperelliptic locus in ${\mathcal M}_4$. We also relate our compactification to a compactification of the Hurwitz space ${\mathcal H}^3_4$ of triple coverings of $\PP^1$ by genus 4 curves.
dc.description.sponsorshipMathematics
dc.format.mimetypeapplication/pdf
dc.language.isoen
dash.licenseLAA
dc.subjectAlgebraic Geometry
dc.subjectModuli spaces
dc.titleStable log surfaces, trigonal covers, and canonical curves of genus 4
dc.typeThesis or Dissertation
dash.depositing.authorHan, Changho
dc.date.available2019-12-12T09:02:31Z
thesis.degree.date2019
thesis.degree.grantorGraduate School of Arts & Sciences
thesis.degree.grantorGraduate School of Arts & Sciences
thesis.degree.levelDoctoral
thesis.degree.levelDoctoral
thesis.degree.nameDoctor of Philosophy
thesis.degree.nameDoctor of Philosophy
dc.type.materialtext
thesis.degree.departmentMathematics
thesis.degree.departmentMathematics
dash.identifier.vireo
dc.identifier.orcid0000-0003-3658-0652
dash.author.emailchhan92@hotmail.com


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record