High-Resolution Lineage Tracking Reveals Travelling Wave of Adaptation in Laboratory Yeast
View/ Open
s41586-019-1749-3.pdf (4.717Mb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Author
Nguyen Ba, Alex
Cvijović, Ivana
Rojas Echenique, José
Liu, Xianan
Levy, Sasha
Published Version
https://doi.org/10.1038/s41586-019-1749-3Metadata
Show full item recordCitation
Nguyen Ba, Alex N., Ivana Cvijović, José I. Rojas Echenique, Katherine R. Lawrence, Artur Rego-Costa, Xianan Liu, Sasha F. Levy, and Michael M. Desai. 2019. High-resolution Lineage Tracking Reveals Travelling Wave of Adaptation in Laboratory Yeast. Nature 575, no. 7783: 494-99.Abstract
In rapidly adapting asexual populations, including many microbial pathogens and viruses, numerous mutant lineages often compete simultaneously for dominance within the population. These complex evolutionary dynamics determine the outcomes of adaptation, but have been difficult to observe directly. While earlier studies used whole-genome sequencing to follow molecular adaptation, these methods have very limited frequency resolution in microbial populations. Here, we introduce a novel renewable barcoding system to observe evolutionary dynamics at high resolution in laboratory budding yeast. We find nested patterns of interference and hitchhiking even at low frequencies. These events are driven by the continuous appearance of new mutations that modify the fates of existing lineages before they reach substantial frequencies. We observe how the distribution of fitness within the population changes over time, finding a “traveling wave” of adaptation that has been predicted by theory. We show that the dynamics of clonal competition create a dynamical rich-get-richer effect: fitness advantages acquired early in evolution drive clonal expansions, which increase the chances of acquiring future mutations. However, less-fit lineages also routinely leapfrog over strains of higher fitness. Our results demonstrate that this combination of factors, which is not accounted for in any existing model of evolutionary dynamics, is critical in determining the rate, predictability, and molecular basis of adaptation.Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:42083018
Collections
- FAS Scholarly Articles [17845]
Contact administrator regarding this item (to report mistakes or request changes)