Show simple item record

dc.contributor.authorEvans, A. G.
dc.contributor.authorHe, M. Y.
dc.contributor.authorDeshpande, V.S.
dc.contributor.authorHutchinson, John W.
dc.contributor.authorJacobsen, A. J.
dc.contributor.authorBarvosa-Carter, W.
dc.date.accessioned2010-06-10T20:23:35Z
dc.date.issued2010
dc.identifier.citationEvans, A. G., M. Y. He, V. S. Deshpande, John W. Hutchinson, A. J. Jacobsen, and W. Barvosa-Carter. 2010. Concepts for enhanced energy absorption using hollow micro-lattices. International Journal of Impact Engineering 37(9): 947-959.en_US
dc.identifier.issn0734-743Xen_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:4211042
dc.description.abstractWe present a basic analysis that establishes the metrics affecting the energy absorbed by multilayer cellular media during irreversible compaction on either a mass or volume basis. The behaviors at low and high impulse levels are distinguished through the energy dissipated in the shock. The overall mass of an energy absorbing system (comprising a cellular medium and a buffer) is minimized by maximizing the non-dimensional dissipation per unit mass parameter for the cellular medium, Λ≡Umρs/σY, where Um is the dissipation per unit mass of the cellular medium, ascertained from the area under the quasi-static compressive stress/strain curve, σY the yield strength of the constituent material and ρs the density of the material used in the medium. Plots of Λ against the non-dimensional stress transmitted through the medium, σtr/σY demonstrate the relative energy absorbing characteristics of foams and prismatic media, such as honeycombs. Comparisons with these benchmark systems are used to demonstrate the superior performance of micro-lattices, especially those with hollow truss members. Numerical calculations demonstrate the relative densities and geometric configurations wherein the lattices offer benefit. Experimental results obtained for a Ni micro-lattice with hollow members not only affirm the benefits, but also demonstrate energy absorption levels substantially exceeding those predicted by analysis. This assessment highlights the new opportunities that tailored micro-lattices provide for unprecedented levels of energy absorption for protection from impulsive loads.en_US
dc.description.sponsorshipEngineering and Applied Sciencesen_US
dc.language.isoen_USen_US
dc.publisherElsevieren_US
dc.relation.isversionofdoi:10.1016/j.ijimpeng.2010.03.007en_US
dash.licenseOAP
dc.subjectenergy absorptionen_US
dc.subjectimpulseen_US
dc.subjectcellular mediumen_US
dc.subjectmicro-latticesen_US
dc.subjectfinite elementen_US
dc.titleConcepts for Enhanced Energy Absorption Using Hollow Micro-Latticesen_US
dc.typeJournal Articleen_US
dc.description.versionAccepted Manuscripten_US
dc.relation.journalInternational Journal of Impact Engineeringen_US
dash.depositing.authorHutchinson, John W.
dc.date.available2010-06-10T20:23:35Z
dc.identifier.doi10.1016/j.ijimpeng.2010.03.007*
dash.contributor.affiliatedHutchinson, John


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record