Diverse and robust molecular algorithms using reprogrammable DNA self-assembly
View/ Open
s41586-019-1014-9.pdf (2.539Mb)
Access Status
Full text of the requested work is not available in DASH at this time ("restricted access"). For more information on restricted deposits, see our FAQ.Author
Woods, Damien
Zhou, Felix
Yin, Peng
Winfree, Erik
Published Version
https://doi.org/10.1038/s41586-019-1014-9Metadata
Show full item recordCitation
Woods, D., Doty, D., Myhrvold, C. et al. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature 567, 366–372 (2019). https://doi.org/10.1038/s41586-019-1014-9Abstract
Molecular biology provides an inspiring proof-of-principle that chemical systems can store and process information to direct molecular activities such as the fabrication of complex structures from molecular components. A first step towards mimicking this capability is understanding how molecular interactions encode and execute algorithms, with self-assembly of relatively simple units into complex products1 particularly well-suited for such investigations. Theory has indeed shown that full-fledged algorithmic behavior can be embedded within molecular self-assembly processes2,3, and this has been experimentally demonstrated by using DNA nanotechnology4 and up to 22 tile types5,6,7,8,9,10,11. But many information technologies exhibit a complexity threshold – such as the minimum transistor count needed for a general-purpose computer – beyond which the power of a reprogrammable system increases qualitatively, and it remains unclear whether the biophysics of DNA self-assembly allows that threshold to be exceeded. Here we report the design and experimental validation of a DNA tile set that contains 355 single-stranded tiles and can, through simple tile selection, be reprogrammed to implement a wide variety of 6-bit algorithms. We use this set to implement 21 circuits that include copying, sorting, recognizing palindromes and multiples of 3, random walking, obtaining an unbiased choice from a biased random source, electing a leader, simulating cellular automata, generating deterministic and randomised patterns, and serving as a period 63 counter, and find an average per-tile error rate less than 1 in 3000. These findings suggest that molecular self-assembly may serve as a reliable algorithmic component within future programmable chemical systems that could serve as creative spaces where high-level molecular programmers can flourish.Citable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:42659225
Collections
- FAS Scholarly Articles [18145]
Contact administrator regarding this item (to report mistakes or request changes)