The Complete Survey of Outflows in Perseus
Author
Arce, Hector G.
Published Version
https://doi.org/10.1088/0004-637X/715/2/1170Metadata
Show full item recordCitation
Arce, Hector G., Michelle A. Borkin, Alyssa A. Goodman, Jaime E. Pineda, Michael W. Halle. 2010. The complete survey of outflows in Perseus. Astrophysical Journal 715(2): 1170-1190.Abstract
We present a study on the impact of molecular outflows in the Perseus molecular cloud complex using the COMPLETE Survey large-scale \(^{12}CO(1-0)\) and \(^{13}CO(1-0)\) maps. We used three-dimensional isosurface models generated in right ascension-declination-velocity space to visualize the maps. This rendering of the molecular line data allowed for a rapid and efficient way to search for molecular outflows over a large \((\sim16 deg^2)\) area. Our outflow-searching technique detected previously known molecular outflows as well as new candidate outflows. Most of these new outflow-related high-velocity features lie in regions that have been poorly studied before. These new outflow candidates more than double the amount of outflow mass, momentum, and kinetic energy in the Perseus cloud complex. Our results indicate that outflows have significant impact on the environment immediately surrounding localized regions of active star formation, but lack the energy needed to feed the observed turbulence in the entire Perseus complex. This implies that other energy sources, in addition to protostellar outflows, are responsible for turbulence on a global cloud scale in Perseus. We studied the impact of outflows in six regions with active star formation within Perseus of sizes in the range of 1-4 pc. We find that outflows have enough power to maintain the turbulence in these regions and enough momentum to disperse and unbind some mass from them. We found no correlation between outflow strength and star formation efficiency (SFE) for the six different regions we studied, contrary to results of recent numerical simulations. The low fraction of gas that potentially could be ejected due to outflows suggests that additional mechanisms other than cloud dispersal by outflows are needed to explain low SFEs in clusters.Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAPCitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4310840
Collections
- FAS Scholarly Articles [17573]
Contact administrator regarding this item (to report mistakes or request changes)