Phylogenomics of Unusual Histone H2A Variants in Bdelloid Rotifers

View/ Open
Author
Van Doninck, Karine
Mandigo, Morgan L.
Hur, Jae H.
Wang, Peter
Guglielmini, Julien
Milinkovitch, Michel C.
Malik, Harmit S.
Published Version
https://doi.org/10.1371/journal.pgen.1000401Metadata
Show full item recordCitation
Van Doninck, Karine, Morgan L. Mandigo, Jae H. Hur, Peter Wang, Julien Guglielmini, Michel C. Milinkovitch, William S. Lane, Matthew Meselson, and Harmit S. Malik. 2009. Phylogenomics of unusual histone H2A variants in bdelloid rotifers. PLoS Genetics 5(3): e1000401.Abstract
Rotifers of Class Bdelloidea are remarkable in having evolved for millions of years, apparently without males and meiosis. In addition, they are unusually resistant to desiccation and ionizing radiation and are able to repair hundreds of radiation-induced DNA double-strand breaks per genome with little effect on viability or reproduction. Because specific histone H2A variants are involved in DSB repair and certain meiotic processes in other eukaryotes, we investigated the histone H2A genes and proteins of two bdelloid species. Genomic libraries were built and probed to identify histone H2A genes in Adineta vaga and Philodina roseola, species representing two different bdelloid families. The expressed H2A proteins were visualized on SDS-PAGE gels and identified by tandem mass spectrometry. We find that neither the core histone H2A, present in nearly all other eukaryotes, nor the H2AX variant, a ubiquitous component of the eukaryotic DSB repair machinery, are present in bdelloid rotifers. Instead, they are replaced by unusual histone H2A variants of higher mass. In contrast, a species of rotifer belonging to the facultatively sexual, desiccation- and radiation-intolerant sister class of bdelloid rotifers, the monogononts, contains a canonical core histone H2A and appears to lack the bdelloid H2A variant genes. Applying phylogenetic tools, we demonstrate that the bdelloid-specific H2A variants arose as distinct lineages from canonical H2A separate from those leading to the H2AX and H2AZ variants. The replacement of core H2A and H2AX in bdelloid rotifers by previously uncharacterized H2A variants with extended carboxy-terminal tails is further evidence for evolutionary diversity within this class of histone H2A genes and may represent adaptation to unusual features specific to bdelloid rotifers.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642717/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAPCitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4453992
Collections
- FAS Scholarly Articles [18153]
Contact administrator regarding this item (to report mistakes or request changes)