A Data-Driven Clustering Method for Time Course Gene Expression Data

DSpace/Manakin Repository

A Data-Driven Clustering Method for Time Course Gene Expression Data

Citable link to this page


Title: A Data-Driven Clustering Method for Time Course Gene Expression Data
Author: Ma, Ping; Castillo-Davis, Cristian I.; Zhong, Wenxuan; Liu, Jun

Note: Order does not necessarily reflect citation order of authors.

Citation: Ma, Ping, Cristian I. Castillo-Davis, Wenxuan Zhong, and Jun S. Liu. 2006. A data-driven clustering method for time course gene expression data. Nucleic Acids Research 34(4): 1261-1269.
Full Text & Related Files:
Abstract: Gene expression over time is, biologically, a continuous process and can thus be represented by a continuous function, i.e. a curve. Individual genes often share similar expression patterns (functional forms). However, the shape of each function, the number of such functions, and the genes that share similar functional forms are typically unknown. Here we introduce an approach that allows direct discovery of related patterns of gene expression and their underlying functions (curves) from data without a priori specification of either cluster number or functional form. Smoothing spline clustering (SSC) models natural properties of gene expression over time, taking into account natural differences in gene expression within a cluster of similarly expressed genes, the effects of experimental measurement error, and missing data. Furthermore, SSC provides a visual summary of each cluster's gene expression function and goodness-of-fit by way of a ‘mean curve’ construct and its associated confidence bands. We apply this method to gene expression data over the life-cycle of Drosophila melanogaster and Caenorhabditis elegans to discover 17 and 16 unique patterns of gene expression in each species, respectively. New and previously described expression patterns in both species are discovered, the majority of which are biologically meaningful and exhibit statistically significant gene function enrichment. Software and source code implementing the algorithm, SSCLUST, is freely available
Published Version: doi:10.1093/nar/gkl013
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1388097/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4457609
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search