Estimation and Testing for the Effect of a Genetic Pathway on a Disease Outcome Using Logistic Kernel Machine Regression via Logistic Mixed Models

DSpace/Manakin Repository

Estimation and Testing for the Effect of a Genetic Pathway on a Disease Outcome Using Logistic Kernel Machine Regression via Logistic Mixed Models

Citable link to this page

 

 
Title: Estimation and Testing for the Effect of a Genetic Pathway on a Disease Outcome Using Logistic Kernel Machine Regression via Logistic Mixed Models
Author: Liu, Dawei; Ghosh, Debashis; Lin, Xihong

Note: Order does not necessarily reflect citation order of authors.

Citation: Liu, Dawei, Debashis Ghosh, and Xihong Lin. 2008. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC Bioinformatics 9:292.
Full Text & Related Files:
Research Data: http://hdl.handle.net/1902.1/15146
Abstract: Background: Growing interest on biological pathways has called for new statistical methods for modeling and testing a genetic pathway effect on a health outcome. The fact that genes within a pathway tend to interact with each other and relate to the outcome in a complicated way makes nonparametric methods more desirable. The kernel machine method provides a convenient, powerful and unified method for multi-dimensional parametric and nonparametric modeling of the pathway effect. Results: In this paper we propose a logistic kernel machine regression model for binary outcomes. This model relates the disease risk to covariates parametrically, and to genes within a genetic pathway parametrically or nonparametrically using kernel machines. The nonparametric genetic pathway effect allows for possible interactions among the genes within the same pathway and a complicated relationship of the genetic pathway and the outcome. We show that kernel machine estimation of the model components can be formulated using a logistic mixed model. Estimation hence can proceed within a mixed model framework using standard statistical software. A score test based on a Gaussian process approximation is developed to test for the genetic pathway effect. The methods are illustrated using a prostate cancer data set and evaluated using simulations. An extension to continuous and discrete outcomes using generalized kernel machine models and its connection with generalized linear mixed models is discussed. Conclusion: Logistic kernel machine regression and its extension generalized kernel machine regression provide a novel and flexible statistical tool for modeling pathway effects on discrete and continuous outcomes. Their close connection to mixed models and attractive performance make them have promising wide applications in bioinformatics and other biomedical areas.
Published Version: doi:10.1186/1471-2105-9-292
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2483287/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4553229
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters