Show simple item record

dc.contributor.authorKidgell, Claire
dc.contributor.authorDaily, Johanna
dc.contributor.authorBorevitz, Justin O
dc.contributor.authorPlouffe, David
dc.contributor.authorZhou, Yingyao
dc.contributor.authorLe Roch, Karine G.
dc.contributor.authorNdir, Omar
dc.contributor.authorMboup, Soulyemane
dc.contributor.authorBatalov, Serge
dc.contributor.authorWinzeler, Elizabeth A
dc.contributor.authorVolkman, Sarah K.
dc.contributor.authorJohnson, Jeffrey R.
dc.contributor.authorSarr, Ousmane
dc.contributor.authorWirth, Dyann Fergus
dc.date.accessioned2010-11-17T16:41:44Z
dc.date.issued2006
dc.identifier.citationKidgell, Claire, Sarah K. Volkman, Johanna Daily, Justin O. Borevitz, David Plouffe, Yingyao Zhou, Jeffrey R. Johnson, et al. 2006. A systematic map of genetic variation in plasmodium falciparum. PLoS Pathogens 2(6): e57.en_US
dc.identifier.issn1553-7366en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:4569478
dc.description.abstractDiscovering novel genes involved in immune evasion and drug resistance in the human malaria parasite, Plasmodium falciparum, is of critical importance to global health. Such knowledge may assist in the development of new effective vaccines and in the appropriate use of antimalarial drugs. By performing a full-genome scan of allelic variability in 14 field and laboratory strains of P. falciparum, we comprehensively identified ≈500 genes evolving at higher than neutral rates. The majority of the most variable genes have paralogs within the P. falciparum genome and may be subject to a different evolutionary clock than those without. The group of 211 variable genes without paralogs contains most known immunogens and a few drug targets, consistent with the idea that the human immune system and drug use is driving parasite evolution. We also reveal gene-amplification events including one surrounding pfmdr1, the P. falciparum multidrug-resistance gene, and a previously uncharacterized amplification centered around the P. falciparum GTP cyclohydrolase gene, the first enzyme in the folate biosynthesis pathway. Although GTP cyclohydrolase is not the known target of any current drugs, downstream members of the pathway are targeted by several widely used antimalarials. We speculate that an amplification of the GTP cyclohydrolase enzyme in the folate biosynthesis pathway may increase flux through this pathway and facilitate parasite resistance to antifolate drugs.en_US
dc.language.isoen_USen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofdoi:10.1371/journal.ppat.0020057en_US
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1480597/pdf/en_US
dash.licenseLAA
dc.subjectinfectious diseasesen_US
dc.subjectmicrobiologyen_US
dc.subjectsystems biologyen_US
dc.subjectgeneticsen_US
dc.subjectgenomicsen_US
dc.subjectcomparative genomicsen_US
dc.subjectparasitologyen_US
dc.subjecteukayotesen_US
dc.subjectplasmodiumen_US
dc.titleA Systematic Map of Genetic Variation in Plasmodium falciparumen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalPLoS Pathogensen_US
dash.depositing.authorWirth, Dyann Fergus
dc.date.available2010-11-17T16:41:44Z
dash.affiliation.otherSPH^Malaria/Wirthen_US
dash.affiliation.otherSPH^Immunology and Infectious Diseases TPHen_US
dc.identifier.doi10.1371/journal.ppat.0020057*
dash.authorsorderedfalse
dash.contributor.affiliatedSarr, Ousmane
dash.contributor.affiliatedWirth, Dyann


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record