Show simple item record

dc.contributor.authorNiethammer, Philipp Michael
dc.contributor.authorKronja, Iva
dc.contributor.authorKandels-Lewis, Stefanie
dc.contributor.authorRybina, Sonja
dc.contributor.authorBastiaens, Philippe
dc.contributor.authorKarsenti, Eric
dc.date.accessioned2011-02-15T00:15:55Z
dc.date.issued2007
dc.identifier.citationNiethammer, Philipp, Iva Kronja, Stefanie Kandels-Lewis, Sonja Rybina, Philippe Bastiaens, and Eric Karsenti. 2007. Discrete States of a Protein Interaction Network Govern Interphase and Mitotic Microtubule Dynamics. PLoS Biology 5(2): e29.en_US
dc.identifier.issn1544-9173en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:4725511
dc.description.abstractThe cytoplasm of eukaryotic cells is thought to adopt discrete “states” corresponding to different steady states of protein networks that govern changes in subcellular organization. For example, in Xenopus eggs, the interphase to mitosis transition is induced solely by activation of cyclin-dependent kinase 1 (CDK1) that phosphorylates many proteins leading to a reorganization of the nucleus and assembly of the mitotic spindle. Among these changes, the large array of stable microtubules that exists in interphase is replaced by short, highly dynamic microtubules in metaphase. Using a new visual immunoprecipitation assay that quantifies pairwise protein interactions in a non-perturbing manner in Xenopus egg extracts, we reveal the existence of a network of interactions between a series of microtubule-associated proteins (MAPs). In interphase, tubulin interacts with XMAP215, which is itself interacting with XKCM1, which connects to APC, EB1, and CLIP170. In mitosis, tubulin interacts with XMAP215, which is connected to EB1. We show that in interphase, microtubules are stable because the catastrophe-promoting activity of XKCM1 is inhibited by its interactions with the other MAPs. In mitosis, microtubules are short and dynamic because XKCM1 is free and has a strong destabilizing activity. In this case, the interaction of XMAP215 with EB1 is required to counteract the strong activity of XKCM1. This provides the beginning of a biochemical description of the notion of “cytoplasmic states” regarding the microtubule system.en_US
dc.language.isoen_USen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofdoi:10.1371/journal.pbio.0050029en_US
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1769425/pdf/en_US
dash.licenseLAA
dc.subjectbiochemistryen_US
dc.subjectcell biologyen_US
dc.subjectcomputational biologyen_US
dc.subjectxenopusen_US
dc.titleDiscrete States of a Protein Interaction Network Govern Interphase and Mitotic Microtubule Dynamicsen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalPLoS Biologyen_US
dash.depositing.authorNiethammer, Philipp Michael
dc.date.available2011-02-15T00:15:55Z
dash.affiliation.otherHMS^Systems Biologyen_US
dc.identifier.doi10.1371/journal.pbio.0050029*
dash.contributor.affiliatedNiethammer, Philipp Michael


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record