Functional Analysis of VopF Activity Required for Colonization in Vibrio cholerae

DSpace/Manakin Repository

Functional Analysis of VopF Activity Required for Colonization in Vibrio cholerae

Citable link to this page


Title: Functional Analysis of VopF Activity Required for Colonization in Vibrio cholerae
Author: Tam, Vincent C.; Biswas, Kuntal; Faruque, Shah M.; Suzuki, Masato; Coughlin, Margaret; Saslowsky, David; Lencer, Wayne Isaac; Mekalanos, John J.

Note: Order does not necessarily reflect citation order of authors.

Citation: Tam, Vincent C., Masato Suzuki, Margaret Coughlin, David Saslowsky, Kuntal Biswas, Wayne I. Lencer, Shah M. Faruque, and John J. Mekalanos. 2010. Functional analysis of VopF activity required for colonization in Vibrio cholerae. mBio 1(5):e00289-10.
Full Text & Related Files:
Abstract: Vibrio cholerae, a Gram-negative facultative pathogen, is the etiologic agent for the diarrheal disease cholera. We previously characterized a clinical isolate, AM-19226, that translocates a type III secretion system (T3SS) effector protein with actin-nucleating activity, VopF, into the host cells. From comparative genomic studies, we identified a divergent T3SS island in additional isolates which possess a VopF homolog, VopN. Unlike the VopF-mediated protrusion formation, VopN localizes to stress fiber in host cells similarly to VopL, which is present in the pandemic strain of Vibrio parahaemolyticus. Chimera and yeast two-hybrid studies indicated that the amino-terminal regions of VopF and VopN proteins interact with distinct host cell factors. We determined that AM-19226-infected cells are arrested at S phase of the cell cycle and that VopF/VopN are antiapoptotic factors. To understand how VopF may contribute to the pathogenesis of AM-19226, we examined the effect of VopF in an in vitro polarized-epithelial model and an in vivo adult rabbit diarrheal model. Within the T3SS pathogenicity island is VopE, a homolog of YopE from Yersinia, which has been shown to loosen tight junctions. In polarized intestinal epithelia, VopF and VopE compromised the integrity of tight junctions by inducing cortical actin depolymerization and aberrant localization of the tight-junction protein ZO-1. An assay for pathogenicity in the adult rabbit diarrhea model suggested that these effectors are involved in eliciting the diarrheal response in infected rabbits.
Published Version: doi:10.1128/mBio.00289-10
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search