Immune-Driven Recombination and Loss of Control after HIV Superinfection

DSpace/Manakin Repository

Immune-Driven Recombination and Loss of Control after HIV Superinfection

Citable link to this page


Title: Immune-Driven Recombination and Loss of Control after HIV Superinfection
Author: Streeck, Hendrik; Li, Bin; Poon, Art F. Y.; Schneidewind, Anne; Gladden, Adrianne D.; Power, Karen A.; Daskalakis, Demetre; Bazner, Suzane; Zuniga, Rosario; Brander, Christian; Rosenberg, Eric Scott; Frost, Simon D. W.; Altfeld, Marcus; Allen, Todd

Note: Order does not necessarily reflect citation order of authors.

Citation: Streeck, Hendrik, Bin Li, Art F.Y. Poon, Arne Schneidewind, Adrianne D. Gladden, Karen A. Power, Demetre Daskalakis, Suzane Bazner, Rosario Zuniga, Christian Brander, Eric S. Rosenberg, Simon D.W. Frost, Marcus Altfeld, and Todd M. Allen. 2008. Immune-driven recombination and loss of control after HIV superinfection. The Journal of Experimental Medicine 205(8): 1789-1796.
Full Text & Related Files:
Abstract: After acute HIV infection, CD8^{+} T cells are able to control viral replication to a set point. This control is often lost after superinfection, although the mechanism behind this remains unclear. In this study, we illustrate in an HLA-B27^{+} subject that loss of viral control after HIV superinfection coincides with rapid recombination events within two narrow regions of Gag and Env. Screening for CD8^{+} T cell responses revealed that each of these recombination sites (∼50 aa) encompassed distinct regions containing two immunodominant CD8 epitopes (B27-KK10 in Gag and Cw1-CL9 in Env). Viral escape and the subsequent development of variant-specific de novo CD8^{+} T cell responses against both epitopes were illustrative of the significant immune selection pressures exerted by both responses. Comprehensive analysis of the kinetics of CD8 responses and viral evolution indicated that the recombination events quickly facilitated viral escape from both dominant WT- and variant-specific responses. These data suggest that the ability of a superinfecting strain of HIV to overcome preexisting immune control may be related to its ability to rapidly recombine in critical regions under immune selection pressure. These data also support a role for cellular immune pressures in driving the selection of new recombinant forms of HIV.
Published Version: doi:10.1084/jem.20080281
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search