Global Diversity in Light of Climate Change: the Case of Ants

DSpace/Manakin Repository

Global Diversity in Light of Climate Change: the Case of Ants

Citable link to this page


Title: Global Diversity in Light of Climate Change: the Case of Ants
Author: Jenkins, Clinton N.; Sanders, Nathan J.; Andersen, Alan N.; Arnan, Xavier; Brühl, Carsten A.; Cerda, Xim; Ellison, Aaron M.; Fisher, Brian L.; Fitzpatrick, Matthew C.; Gotelli, Nicholas J.; Gove, Aaron D.; Guénard, Benoit; Lattke, John E.; Lessard, Jean-Philippe; McGlynn, Terrence P.; Menke, Sean B.; Parr, Catherine L.; Philpott, Stacy M.; Vasconcelos, Heraldo L.; Weiser, Michael D.; Dunn, Robert R.

Note: Order does not necessarily reflect citation order of authors.

Citation: Clinton N. Jenkins et al. Forthcoming. Global diversity in light of climate change: the case of ants. Diversity and Distributions.
Access Status: Full text of the requested work is not available in DASH at this time (“dark deposit”). For more information on dark deposits, see our FAQ.
Full Text & Related Files:
Abstract: Aim: To use a fine-grained global model of ant diversity to identify the limits of our knowledge of diversity in the context of climate change. Location: Global. Methods: We applied generalized linear modelling to a global database of local ant assemblages to predict the species density of ants globally. Predictors evaluated include simple climate variables, combined temperature × precipitation variables, biogeographic region, elevation, and interactions between select variables. Areas of the planet identified as beyond the reliable prediction ability of the model were those having climatic conditions more extreme than what was represented in the ant database. Results: Temperature was the most important single predictor of ant species density, and a mix of climatic variables, biogeographic region, and interactions between climate and region yielded the best overall model. Broadly, geographic patterns of ant diversity match those of other taxa, with high species density in the wet tropics and in some, but not all, parts of the dry tropics. Uncertainty in model predictions appears to derive from the low amount of standardized sampling of ants in Asia, Africa, and in the most extreme (e.g. hottest) climates. Model residuals increase as a function of temperature. This suggests that our understanding of the drivers of ant diversity at high temperatures is incomplete, especially in hot and arid climates. In other words, our ignorance of how ant diversity relates to environment is greatest in those regions where most species occur—hot climates, both wet and dry. Main conclusions: Our results have two important implications. First, temperature is necessary, but not sufficient, to explain fully the patterns of ant diversity. Second, our ability to predict ant diversity is weakest exactly where we need to know the most, the warmest regions of a warming world. This includes significant parts of the tropics and some of the most biologically diverse areas in the world.
Published Version:
Other Sources:
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search