The Amino-Acid Mutational Spectrum of Human Genetic Disease

DSpace/Manakin Repository

The Amino-Acid Mutational Spectrum of Human Genetic Disease

Citable link to this page

 

 
Title: The Amino-Acid Mutational Spectrum of Human Genetic Disease
Author: Vitkup, Dennis; Sander, Chris; Church, George McDonald

Note: Order does not necessarily reflect citation order of authors.

Citation: Vitkup, Dennis, Chris Sander, and George M. Church. 2003. The amino-acid mutational spectrum of human genetic disease. Genome Biology 4(11): R72.
Full Text & Related Files:
Abstract: Background: Nonsynonymous mutations in the coding regions of human genes are responsible
for phenotypic differences between humans and for susceptibility to genetic disease.
Computational methods were recently used to predict deleterious effects of nonsynonymous
human mutations and polymorphisms. Here we focus on understanding the amino-acid mutation
spectrum of human genetic disease. We compare the disease spectrum to the spectra of mutual
amino-acid mutation frequencies, non-disease polymorphisms in human genes, and substitutions
fixed between species.
Results: We find that the disease spectrum correlates well with the amino-acid mutation
frequencies based on the genetic code. Normalized by the mutation frequencies, the spectrum can
be rationalized in terms of chemical similarities between amino acids. The disease spectrum is
almost identical for membrane and non-membrane proteins. Mutations at arginine and glycine
residues are together responsible for about 30% of genetic diseases, whereas random mutations at
tryptophan and cysteine have the highest probability of causing disease.
Conclusions: The overall disease spectrum mainly reflects the mutability of the genetic code. We
corroborate earlier results that the probability of a nonsynonymous mutation causing a genetic
disease increases monotonically with an increase in the degree of evolutionary conservation of the
mutation site and a decrease in the solvent-accessibility of the site; opposite trends are observed
for non-disease polymorphisms. We estimate that the rate of nonsynonymous mutations with a
negative impact on human health is less than one per diploid genome per generation.
Published Version: doi:10.1186/gb-2003-4-11-r72
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC329120/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:4878075
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters