Compensatory Mutations Restore Fitness During the Evolution of Dihydrofolate Reductase

DSpace/Manakin Repository

Compensatory Mutations Restore Fitness During the Evolution of Dihydrofolate Reductase

Citable link to this page

 

 
Title: Compensatory Mutations Restore Fitness During the Evolution of Dihydrofolate Reductase
Author: Brown, Kyle M.; Costanzo, Marna; Xu, Wenxin; Roy, Scott; Hartl, Daniel L.

Note: Order does not necessarily reflect citation order of authors.

Citation: Brown, Kyle M., Marna Costanzo, Wenxin Xu, Scott Roy, and Daniel Hartl. 2010. Compensatory mutations restore fitness during the evolution of dihydrofolate reductase. Molecular Biology and Evolution 27(12): 2682-2690.
Full Text & Related Files:
Abstract: Whether a trade-off exists between robustness and evolvability is an important issue for protein evolution. While traditional viewpoints have assumed that existing functions must be compromised by the evolution of novel activities, recent research has suggested that existing phenotypes can be robust to the evolution of novel protein functions. Enzymes that are targets of antibiotics that are competitive inhibitors must evolve decreased drug affinity while maintaining their function and sustaining growth. Utilizing a transgenic Saccharomyces cerevisiae model expressing the dihydrofolate reductase (DHFR) enzyme from the malarial parasite Plasmodium falciparum, we examine the robustness of growth rate to drug-resistance mutations. We assay the growth rate and resistance of all 48 combinations of 6 DHFR point mutations associated with increased drug resistance in field isolates of the parasite. We observe no consistent relationship between growth and resistance phenotypes among the DHFR alleles. The three evolutionary pathways that dominate DHFR evolution show that mutating with increased resistance can compensate for initial declines in growth rate from previously acquired mutations. In other words, resistance mutations that occur later in evolutionary trajectories can compensate for the fitness consequences of earlier mutations. Our results suggest that high levels of resistance may be selected for without necessarily jeopardizing overall fitness.
Published Version: doi:10.1093/molbev/msq160
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:5345155
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters