Show simple item record

dc.contributor.authorCohn, Henry
dc.contributor.authorKumar, Abhinav
dc.contributor.authorElkies, Noam David
dc.contributor.authorSchürmann, Achill
dc.date.accessioned2011-11-22T17:30:53Z
dc.date.issued2010
dc.identifier.citationCohn, Henry, Elkies, Noam, Kumar, Abhinav, and Achill Schuermann. 2010. Point configurations that are asymmetric yet balanced. Proceedings of the American Mathematical Society 138 (2010): 2863-2872.en_US
dc.identifier.issn1088-6826en_US
dc.identifier.issn0002-9939en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:5351575
dc.description.abstractA configuration of particles confined to a sphere is balanced if it is in equilibrium under all force laws (that act between pairs of points with strength given by a fixed function of distance). It is straightforward to show that every sufficiently symmetrical configuration is balanced, but the converse is far from obvious. In 1957 Leech completely classified the balanced configurations in \(R^3\), and his classification is equivalent to the converse for \(R^3\). In this paper we disprove the converse in high dimensions. We construct several counterexamples, including one with trivial symmetry group.en_US
dc.description.sponsorshipMathematicsen_US
dc.language.isoen_USen_US
dc.publisherAmerican Mathematical Societyen_US
dc.relation.isversionofdoi://10.1090/S0002-9939-10-10284-6en_US
dash.licenseOAP
dc.titlePoint Configurations That Are Asymmetric Yet Balanceden_US
dc.typeJournal Articleen_US
dc.description.versionAuthor's Originalen_US
dc.relation.journalProceedings of the American Mathematical Societyen_US
dash.depositing.authorElkies, Noam David
dc.date.available2011-11-22T17:30:53Z
dc.identifier.doi10.1090/S0002-9939-10-10284-6*
dash.authorsorderedfalse
dash.contributor.affiliatedElkies, Noam


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record