Model-Driven Analysis of Experimentally Determined Growth Phenotypes for 465 Yeast Gene Deletion Mutants Under 16 Different Conditions

DSpace/Manakin Repository

Model-Driven Analysis of Experimentally Determined Growth Phenotypes for 465 Yeast Gene Deletion Mutants Under 16 Different Conditions

Citable link to this page

 

 
Title: Model-Driven Analysis of Experimentally Determined Growth Phenotypes for 465 Yeast Gene Deletion Mutants Under 16 Different Conditions
Author: Snitkin, Evan S; Dudley, Aimée M; Janse, Daniel M; Wong, Kaisheen; Segrè, Daniel; Church, George McDonald

Note: Order does not necessarily reflect citation order of authors.

Citation: Snitkin, Evan S., Aimée M. Dudley, Daniel M. Janse, Kaisheen Wong, George M. Church, and Daniel Segrè. 2008. Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biology 9 (9): R140.
Full Text & Related Files:
Abstract: Background: Understanding the response of complex biochemical networks to genetic perturbations and environmental variability is a fundamental challenge in biology. Integration of high-throughput experimental assays and genome-scale computational methods is likely to produce insight otherwise unreachable, but specific examples of such integration have only begun to be explored. Results: In this study, we measured growth phenotypes of 465 Saccharomyces cerevisiae gene deletion mutants under 16 metabolically relevant conditions and integrated them with the corresponding flux balance model predictions. We first used discordance between experimental results and model predictions to guide a stage of experimental refinement, which resulted in a significant improvement in the quality of the experimental data. Next, we used discordance still present in the refined experimental data to assess the reliability of yeast metabolism models under different conditions. In addition to estimating predictive capacity based on growth phenotypes, we sought to explain these discordances by examining predicted flux distributions visualized through a new, freely available platform. This analysis led to insight into the glycerol utilization pathway and the potential effects of metabolic shortcuts on model results. Finally, we used model predictions and experimental data to discriminate between alternative raffinose catabolism routes. Conclusions: Our study demonstrates how a new level of integration between high throughput measurements and flux balance model predictions can improve understanding of both experimental and computational results. The added value of a joint analysis is a more reliable platform for specific testing of biological hypotheses, such as the catabolic routes of different carbon sources.
Published Version: doi://10.1186/gb-2008-9-9-r140
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2592718/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:5978703
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters