Expansion Thoracoplasty Affects Lung Growth and Morphology in a Rabbit Model: A Pilot Study

DSpace/Manakin Repository

Expansion Thoracoplasty Affects Lung Growth and Morphology in a Rabbit Model: A Pilot Study

Citable link to this page


Title: Expansion Thoracoplasty Affects Lung Growth and Morphology in a Rabbit Model: A Pilot Study
Author: Mehta, Hemal P.; Olson, J. Casey; Kurek, Kyle Christopher; Warman, Matthew L.; Snyder, Brian Dale

Note: Order does not necessarily reflect citation order of authors.

Citation: Olson, J. Casey, Kyle C. Kurek, Hemal P. Mehta, Matt L. Warman, and Brian D. Snyder. 2011. Expansion thoracoplasty affects lung growth and morphology in a rabbit model: A pilot study. Clinical Orthopaedics and Related Research 469(5): 1375-1382.
Full Text & Related Files:
Abstract: Background: Thoracic insufficiency syndrome represents a novel form of postnatal restrictive respiratory disease occurring in children with early-onset scoliosis and chest wall anomalies. Expansion thoracoplasty improves lung volumes in children with thoracic insufficiency syndrome; however, how it affects lung development is unknown. Questions/purposes: Using a rabbit model of thoracic insufficiency syndrome, we evaluated the effect of expansion thoracoplasty on the response of biologic mechanisms in the alveolar microstructure. Methods: Using archived material from a previous experiment, 10 4-week-old New Zealand rabbits were divided into three groups: normal (n = 3), disease (n = 3), and treated (n = 4). Left ribs four to eight were tethered in seven rabbits at age 5 weeks to induce hypoplasia of the left hemithorax (disease). At age 10 weeks, four of these rabbits were treated by expansion thoracoplasty (treated). At age 24 weeks, lungs were excised and processed. Alveolar density and parenchymal airspace were measured on histologic sections. Immunohistochemistry was performed for vascular endothelial growth factor receptor 2 (angiogenesis), KI-67 (cell proliferation), and RAM-11 (macrophages). Results: Alveolar walls were poorly perfused and airspace fraction was larger (emphysematous) in disease rabbits than normal or treated rabbits. Immunohistochemistry provided inconclusive evidence to support the concept that pulmonary hypoplasia is induced by thoracic insufficiency syndrome and controlled by expansion thoracoplasty. Conclusions: Treatment of thoracic insufficiency syndrome by expansion thoracoplasty may prevent emphysematous changes in the alveolar microstructure, thereby enhancing gas exchange.
Published Version: doi:10.1007/s11999-011-1807-0
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3069277/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:5978714
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search