Show simple item record

dc.contributor.authorReid, Colleen E.
dc.contributor.authorO’Neill, Marie S.
dc.contributor.authorGronlund, Carina J.
dc.contributor.authorBrines, Shannon J.
dc.contributor.authorDiez-Roux, Ana V.
dc.contributor.authorBrown, Daniel G.
dc.contributor.authorSchwartz, Joel David
dc.date.accessioned2012-01-31T02:07:08Z
dc.date.issued2009
dc.identifier.citationReid, Colleen E., Marie S. O'Neill, Carina J. Gronlund, Shannon J. Brines, Daniel G. Brown, Ana V. Diez-Roux, and Joel Schwartz. 2009. Mapping community determinants of heat vulnerability. Environmental Health Perspectives 117(11): 1730-1736.en_US
dc.identifier.issn0091-6765en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:8081532
dc.description.abstractBackground: The evidence that heat waves can result in both increased deaths and illness is substantial, and concern over this issue is rising because of climate change. Adverse health impacts from heat waves can be avoided, and epidemiologic studies have identified specific population and community characteristics that mark vulnerability to heat waves. Objectives: We situated vulnerability to heat in geographic space and identified potential areas for intervention and further research. Methods: We mapped and analyzed 10 vulnerability factors for heat-related morbidity/mortality in the United States: six demographic characteristics and two household air conditioning variables from the U.S. Census Bureau, vegetation cover from satellite images, and diabetes prevalence from a national survey. We performed a factor analysis of these 10 variables and assigned values of increasing vulnerability for the four resulting factors to each of 39,794 census tracts. We added the four factor scores to obtain a cumulative heat vulnerability index value. Results: Four factors explained > 75% of the total variance in the original 10 vulnerability variables: a) social/environmental vulnerability (combined education/poverty/race/green space), b) social isolation, c) air conditioning prevalence, and d) proportion elderly/diabetes. We found substantial spatial variability of heat vulnerability nationally, with generally higher vulnerability in the Northeast and Pacific Coast and the lowest in the Southeast. In urban areas, inner cities showed the highest vulnerability to heat. Conclusions: These methods provide a template for making local and regional heat vulnerability maps. After validation using health outcome data, interventions can be targeted at the most vulnerable populations.en_US
dc.language.isoen_USen_US
dc.publisherNational Institute of Environmental Health Sciencesen_US
dc.relation.isversionofdoi://10.1289/ehp.0900683en_US
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2801183/pdf/en_US
dash.licenseLAA
dc.subjectclimateen_US
dc.subjectenvironmental healthen_US
dc.subjectgeographic information systemsen_US
dc.subjectheaten_US
dc.subjectpublic healthen_US
dc.subjectvulnerable populationsen_US
dc.titleMapping Community Determinants of Heat Vulnerabilityen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalEnvironmental Health Perspectivesen_US
dash.depositing.authorSchwartz, Joel David
dc.date.available2012-01-31T02:07:08Z
dash.affiliation.otherHMS^Medicine-Brigham and Women's Hospitalen_US
dash.affiliation.otherSPH^Exposure Epidemiology and Risk Programen_US
dc.identifier.doi10.1289/ehp.0900683*
dash.authorsorderedfalse
dash.contributor.affiliatedSchwartz, Joel


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record