The Two-loop Hemisphere Soft Function

DSpace/Manakin Repository

The Two-loop Hemisphere Soft Function

Citable link to this page


Title: The Two-loop Hemisphere Soft Function
Author: Kelley, Randall; Schabinger, Robert; Schwartz, Matthew D; Zhu, Hua

Note: Order does not necessarily reflect citation order of authors.

Citation: Kelley, Randall, Robert Schabinger, Matthew Schwartz and Hua Xing Zhu. 2011. The two-loop hemisphere soft function. Physical Review D 84(4): 045022.
Full Text & Related Files:
Abstract: The hemisphere soft function is calculated to order \(\alpha_s^2\). This is the first multi-scale soft function calculated to two loops. The renormalization scale dependence of the result agrees exactly with the prediction from effective field theory. This fixes the unknown coefficients of the singular parts of the two-loop thrust and heavy-jet mass distributions. There are four such coefficients, for 2 event shapes and 2 color structures, which are shown to be in excellent agreement with previous numerical extraction. The asymptotic behavior of the soft function has double logs in the \(C_F C_A\) color structure, which agree with non-global log calculations, but also has sub-leading single logs for both the \(C_F C_A\) and \(C_F T_F n_f\) color structures. The general form of the soft function is complicated, does not factorize in a simple way, and disagrees with the Hoang-Kluth ansatz. The exact hemisphere soft function will remove one source of uncertainty on the \(\alpha_s\) fits from \(e^+e^-\) event shapes.
Published Version: doi:10.1103/PhysRevD.84.045022
Other Sources:
Terms of Use: This article is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at
Citable link to this page:
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)


Search DASH

Advanced Search