Scaling and Localization Lengths of a Topologically Disordered System

DSpace/Manakin Repository

Scaling and Localization Lengths of a Topologically Disordered System

Show simple item record Krich, Jacob Jonathan Aspuru-Guzik, Alán 2012-03-18T23:20:11Z 2011
dc.identifier.citation Krich, Jacob Jonathan, and Alán Aspuru-Guzik. 2011. Scaling and localization lengths of a topologically disordered system. Physical Review Letters 106(15): 156405. en_US
dc.identifier.issn 0031-9007 en_US
dc.identifier.issn 1079-7114 en_US
dc.description.abstract We consider a noninteracting disordered system designed to model particle diffusion, relaxation in glasses, and impurity bands of semiconductors. Disorder originates in the random spatial distribution of sites. We find strong numerical evidence that this model displays the same universal behavior as the standard Anderson model. We use finite-size scaling to find the localization length as a function of energy and density, including localized states away from the delocalization transition. Results at many energies all fit onto the same universal scaling curve. en_US
dc.description.sponsorship Chemistry and Chemical Biology en_US
dc.language.iso en_US en_US
dc.publisher American Physical Society en_US
dc.relation.isversionof doi:10.1103/PhysRevLett.106.156405 en_US
dc.relation.hasversion en_US
dash.license OAP
dc.subject neural networks en_US
dc.subject disordered systems en_US
dc.title Scaling and Localization Lengths of a Topologically Disordered System en_US
dc.type Journal Article en_US
dc.description.version Author's Original en_US
dc.relation.journal Physical Review Letters en_US Aspuru-Guzik, Alán 2012-03-18T23:20:11Z

Files in this item

Files Size Format View
Scaling_and_localization_lengths.pdf 2.092Mb PDF View/Open

This item appears in the following Collection(s)

Show simple item record


Search DASH

Advanced Search