Show simple item record

dc.contributor.authorPost, Robert B.
dc.contributor.authorHaberman, Jason
dc.contributor.authorIwaki, Lica
dc.contributor.authorWhitney, David
dc.date.accessioned2012-03-27T18:27:21Z
dc.date.issued2012
dc.identifier.citationPost, Robert B., Jason Haberman, Lica Iwaki, and David Whitney. 2012. The frozen face effect: Why static photographs may not do you justice. Frontiers in Psychology 3:22.en_US
dc.identifier.issn1664-1078en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:8457941
dc.description.abstractWhen a video of someone speaking is paused, the stationary image of the speaker typically appears less flattering than the video, which contained motion. We call this the frozen face effect (FFE). Here we report six experiments intended to quantify this effect and determine its cause. In Experiment 1, video clips of people speaking in naturalistic settings as well as all of the static frames that composed each video were presented, and subjects rated how flattering each stimulus was. The videos were rated to be significantly more flattering than the static images, confirming the FFE. In Experiment 2, videos and static images were inverted, and the videos were again rated as more flattering than the static images. In Experiment 3, a discrimination task measured recognition of the static images that composed each video. Recognition did not correlate with flattery ratings, suggesting that the FFE is not due to better memory for particularly distinct images. In Experiment 4, flattery ratings for groups of static images were compared with those for videos and static images. Ratings for the video stimuli were higher than those for either the group or individual static stimuli, suggesting that the amount of information available is not what produces the FFE. In Experiment 5, videos were presented under four conditions: forward motion, inverted forward motion, reversed motion, and scrambled frame sequence. Flattery ratings for the scrambled videos were significantly lower than those for the other three conditions. In Experiment 6, as in Experiment 2, inverted videos and static images were compared with upright ones, and the response measure was changed to perceived attractiveness. Videos were rated as more attractive than the static images for both upright and inverted stimuli. Overall, the results suggest that the FFE requires continuous, natural motion of faces, is not sensitive to inversion, and is not due to a memory effect.en_US
dc.description.sponsorshipPsychologyen_US
dc.language.isoen_USen_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofdoi://10.3389/fpsyg.2012.00022en_US
dc.relation.hasversionhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282501/pdf/en_US
dash.licenseLAA
dc.subjectface perceptionen_US
dc.subjectstatic imagesen_US
dc.subjectdynamic imagesen_US
dc.subjectattractivenessen_US
dc.subjectfluencyen_US
dc.titleThe Frozen Face Effect: Why Static Photographs May Not Do You Justiceen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalFrontiers in Psychologyen_US
dash.depositing.authorHaberman, Jason
dc.date.available2012-03-27T18:27:21Z
dc.identifier.doi10.3389/fpsyg.2012.00022*
dash.contributor.affiliatedHaberman, Jason


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record