A Race Between Tumor Immunoescape and Genome Maintenance Selects for Optimum Levels of (Epi)genetic Instability

View/ Open
Published Version
https://doi.org/10.1371/journal.pcbi.1002370Metadata
Show full item recordCitation
Iwami, Shingo, Hiroshi Haeno, and Franziska Michor. 2012. A race between tumor immunoescape and genome maintenance selects for optimum levels of (epi)genetic instability. PLoS Computational Biology 8(2): e1002370.Abstract
The human immune system functions to provide continuous body-wide surveillance to detect and eliminate foreign agents such as bacteria and viruses as well as the body's own cells that undergo malignant transformation. To counteract this surveillance, tumor cells evolve mechanisms to evade elimination by the immune system; this tumor immunoescape leads to continuous tumor expansion, albeit potentially with a different composition of the tumor cell population (“immunoediting”). Tumor immunoescape and immunoediting are products of an evolutionary process and are hence driven by mutation and selection. Higher mutation rates allow cells to more rapidly acquire new phenotypes that help evade the immune system, but also harbor the risk of an inability to maintain essential genome structure and functions, thereby leading to an error catastrophe. In this paper, we designed a novel mathematical framework, based upon the quasispecies model, to study the effects of tumor immunoediting and the evolution of (epi)genetic instability on the abundance of tumor and immune system cells. We found that there exists an optimum number of tumor variants and an optimum magnitude of mutation rates that maximize tumor progression despite an active immune response. Our findings provide insights into the dynamics of tumorigenesis during immune system attacks and help guide the choice of treatment strategies that best inhibit diverse tumor cell populations.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280962/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:8603139
Collections
- SPH Scholarly Articles [4830]
Contact administrator regarding this item (to report mistakes or request changes)