A Race Between Tumor Immunoescape and Genome Maintenance Selects for Optimum Levels of (Epi)genetic Instability

DSpace/Manakin Repository

A Race Between Tumor Immunoescape and Genome Maintenance Selects for Optimum Levels of (Epi)genetic Instability

Citable link to this page

 

 
Title: A Race Between Tumor Immunoescape and Genome Maintenance Selects for Optimum Levels of (Epi)genetic Instability
Author: Iwami, Shingo; Haeno, Hiroshi; Michor, Franziska L.

Note: Order does not necessarily reflect citation order of authors.

Citation: Iwami, Shingo, Hiroshi Haeno, and Franziska Michor. 2012. A race between tumor immunoescape and genome maintenance selects for optimum levels of (epi)genetic instability. PLoS Computational Biology 8(2): e1002370.
Full Text & Related Files:
Abstract: The human immune system functions to provide continuous body-wide surveillance to detect and eliminate foreign agents such as bacteria and viruses as well as the body's own cells that undergo malignant transformation. To counteract this surveillance, tumor cells evolve mechanisms to evade elimination by the immune system; this tumor immunoescape leads to continuous tumor expansion, albeit potentially with a different composition of the tumor cell population (“immunoediting”). Tumor immunoescape and immunoediting are products of an evolutionary process and are hence driven by mutation and selection. Higher mutation rates allow cells to more rapidly acquire new phenotypes that help evade the immune system, but also harbor the risk of an inability to maintain essential genome structure and functions, thereby leading to an error catastrophe. In this paper, we designed a novel mathematical framework, based upon the quasispecies model, to study the effects of tumor immunoediting and the evolution of (epi)genetic instability on the abundance of tumor and immune system cells. We found that there exists an optimum number of tumor variants and an optimum magnitude of mutation rates that maximize tumor progression despite an active immune response. Our findings provide insights into the dynamics of tumorigenesis during immune system attacks and help guide the choice of treatment strategies that best inhibit diverse tumor cell populations.
Published Version: doi://10.1371/journal.pcbi.1002370
Other Sources: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280962/pdf/
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:8603139
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters