Whole Genome Characterization of the Mechanisms of Daptomycin Resistance in Clinical and Laboratory Derived Isolates of Staphylococcus aureus

View/ Open
Author
Peleg, Anton Y.
Miyakis, Spiros
Ward, Doyle V.
Earl, Ashlee M.
Rubio, Aileen
Cameron, David R.
Pillai, Satish
Published Version
https://doi.org/10.1371/journal.pone.0028316Metadata
Show full item recordCitation
Peleg, Anton Y., Spiros Miyakis, Doyle V. Ward, Ashlee M. Earl, Aileen Rubio, David R. Cameron, Satish Pillai, Robert C. Moellering, and George M. Eliopoulos. 2012. Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of staphylococcus aureus. PLoS ONE 7(1): e28316.Abstract
Background: Daptomycin remains one of our last-line anti-staphylococcal agents. This study aims to characterize the genetic evolution to daptomycin resistance in S. aureus. Methods: Whole genome sequencing was performed on a unique collection of isogenic, clinical (21 strains) and laboratory (12 strains) derived strains that had been exposed to daptomycin and developed daptomycin-nonsusceptibility. Electron microscopy (EM) and lipid membrane studies were performed on selected isolates. Results: On average, six coding region mutations were observed across the genome in the clinical daptomycin exposed strains, whereas only two mutations on average were seen in the laboratory exposed pairs. All daptomycin-nonsusceptible strains had a mutation in a phospholipid biosynthesis gene. This included mutations in the previously described mprF gene, but also in other phospholipid biosynthesis genes, including cardiolipin synthase (cls2) and CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (pgsA). EM and lipid membrane composition analyses on two clinical pairs showed that the daptomycin-nonsusceptible strains had a thicker cell wall and an increase in membrane lysyl-phosphatidylglycerol. Conclusion: Point mutations in genes coding for membrane phospholipids are associated with the development of reduced susceptibility to daptomycin in S. aureus. Mutations in cls2 and pgsA appear to be new genetic mechanisms affecting daptomycin susceptibility in S. aureus.Other Sources
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253072/pdf/Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAACitable link to this page
http://nrs.harvard.edu/urn-3:HUL.InstRepos:8699138
Collections
- HMS Scholarly Articles [17714]
Contact administrator regarding this item (to report mistakes or request changes)