Show simple item record

dc.contributor.authorMaletinsky, Patrick
dc.contributor.authorHong, Sungkun
dc.contributor.authorGrinolds, Michael Sean
dc.contributor.authorHausmann, Birgit Judith Maria
dc.contributor.authorLukin, Mikhail D.
dc.contributor.authorWalsworth, Ronald L.
dc.contributor.authorLoncar, Marko
dc.contributor.authorYacoby, Amir
dc.date.accessioned2012-08-06T18:00:13Z
dc.date.issued2012
dc.identifier.citationMaletinsky, Patrick, Sungkun Hong, Michael S. Gringolds, Birgit Hausmann, Mikhail Lukin, Ronald L. Walsworth, Marko Loncar and Amir Yacoby. 2012. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nature Nanotechnology 7(5): 320-324.en_US
dc.identifier.issn1748-3387en_US
dc.identifier.issn1748-3395en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:9367006
dc.description.abstractThe nitrogen-vacancy defect centre in diamond has potential applications in nanoscale electric and magnetic-field sensing, single-photon microscopy, quantum information processing and bioimaging. These applications rely on the ability to position a single nitrogen-vacancy centre within a few nanometres of a sample, and then scan it across the sample surface, while preserving the centre’s spin coherence and readout fidelity. However, existing scanning techniques, which use a single diamond nanocrystal grafted onto the tip of a scanning probe microscope, suffer from short spin coherence times due to poor crystal quality, and from inefficient far-field collection of the fluorescence from the nitrogen-vacancy centre. Here, we demonstrate a robust method for scanning a single nitrogen-vacancy centre within tens of nanometres from a sample surface that addresses both of these concerns. This is achieved by positioning a single nitrogen-vacancy centre at the end of a high-purity diamond nanopillar, which we use as the tip of an atomic force microscope. Our approach ensures long nitrogen-vacancy spin coherence times \(\textrm{(∼75 }\mu \textrm{s)}\), enhanced nitrogen-vacancy collection efficiencies due to waveguiding, and mechanical robustness of the device (several weeks of scanning time). We are able to image magnetic domains with widths of 25 nm, and demonstrate a magnetic field sensitivity of \(56\textrm{ nT Hz}^{–1/2}\) at a frequency of 33 kHz, which is unprecedented for scanning nitrogen-vacancy centres.en_US
dc.description.sponsorshipEngineering and Applied Sciencesen_US
dc.description.sponsorshipPhysicsen_US
dc.description.sponsorshipOther Research Uniten_US
dc.language.isoen_USen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofdoi:10.1038/NNANO.2012.50en_US
dc.relation.hasversionhttp://yacoby.physics.harvard.edu/Publications/A%20robust%20scanning%20diamond%20sensor%20for%20nanoscale%20imaging%20with%20single%20nitrogen-vacancy%20centres_2012.pdfen_US
dc.relation.hasversionhttp://arxiv.org/abs/1108.4437en_US
dash.licenseLAA
dc.subjectfield optical microscopyen_US
dc.subjectmagnetic sensorsen_US
dc.subjectmagnetic-resonanceen_US
dc.subjectcoupled electronen_US
dc.subjectlight-source spinen_US
dc.subjectresolutionen_US
dc.subjectphotonen_US
dc.subjectfabricationen_US
dc.titleA Robust Scanning Diamond Sensor for Nanoscale Imaging with Single Nitrogen-Vacancy Centresen_US
dc.typeJournal Articleen_US
dc.description.versionAuthor's Originalen_US
dc.relation.journalNature Nanotechnologyen_US
dash.depositing.authorLukin, Mikhail D.
dash.waiver2012-03-09
dc.date.available2012-08-06T18:00:13Z
dc.identifier.doi10.1038/NNANO.2012.50*
dash.authorsorderedfalse
dash.contributor.affiliatedMaletinsky, Patrick
dash.contributor.affiliatedGrinolds, Michael Sean
dash.contributor.affiliatedHausmann, Birgit Judith Maria
dash.contributor.affiliatedHong, Sungkun
dash.contributor.affiliatedWalsworth, Ronald
dash.contributor.affiliatedLukin, Mikhail
dash.contributor.affiliatedYacoby, Amir
dash.contributor.affiliatedLoncar, Marko


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record