Quasiparticle Tunneling and High Bias Breakdown in the Fractional Quantum Hall Effect

DSpace/Manakin Repository

Quasiparticle Tunneling and High Bias Breakdown in the Fractional Quantum Hall Effect

Citable link to this page

 

 
Title: Quasiparticle Tunneling and High Bias Breakdown in the Fractional Quantum Hall Effect
Author: Dillard, Colin
Citation: Dillard, Colin. 2012. Quasiparticle Tunneling and High Bias Breakdown in the Fractional Quantum Hall Effect. Doctoral dissertation, Harvard University.
Full Text & Related Files:
Abstract: The integer and fractional quantum Hall effects arise in two-dimensional electron systems subject to low temperature and high perpendicular magnetic field. The phenomenology of these two effects is rich and provides interesting insight into quantum physics. We present two experimental studies of phenomena in the fractional quantum Hall regime. The first examines the tunneling conductance of quasiparticles at filling factor 5/2. This state is of significant interest because it lies outside the traditional Jain hierarchy of fractional quantum Hall states and because it may be the first physical system found to exhibit non-abelian particle statistics. A quantum point contact is used to bring edge states on opposite sides of the system in proximity to each other, allowing quasiparticles to tunnel between the edge states. By annealing the gates forming the quantum point contact at different voltages we control the tunneling strength for fixed temperature and bias. We demonstrate a transition from strong to weak tunneling controlled in this manner. In the weak tunneling regime, the DC bias and temperature dependence of the tunneling conductance is fit to a theoretical form, resulting in values for the quasiparticle charge \(e*\) and the interaction parameter \(g\). The values of these parameters are used to help distinguish between proposed candidate states for the 5/2 wave function. Quantitative and qualitative results are most consistent with the abelian 331 state. Our second main focus is the breakdown of the fractional quantum Hall states at filling factors 4/3 and 5/3. Breakdown of integer and fractional quantum Hall states is known to occur when the Hall and longitudinal resistances deviate from their ideal values at nonzero critical currents. Although multiple studies of breakdown in the integer quantum Hall regime have been reported, corresponding results for the fractional regime are scarce. We observe breakdown over a range of integer states that is consistent with previous results. However, breakdown in the fractional regime is found to exhibit markedly different behavior. In particular, the magnitude of the critical current decreases with increased sample width. This behavior is opposite that observed for integer filling factors and does not seem to be explicable based on current theories of breakdown.
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9637862
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters