The Response of Stratospheric Water Vapor to a Changing Climate: Insights from In Situ Water Vapor Measurements

DSpace/Manakin Repository

The Response of Stratospheric Water Vapor to a Changing Climate: Insights from In Situ Water Vapor Measurements

Citable link to this page

 

 
Title: The Response of Stratospheric Water Vapor to a Changing Climate: Insights from In Situ Water Vapor Measurements
Author: Sargent, Maryann Racine
Citation: Sargent, Maryann Racine. 2012. The Response of Stratospheric Water Vapor to a Changing Climate: Insights from In Situ Water Vapor Measurements. Doctoral dissertation, Harvard University.
Full Text & Related Files:
Abstract: Stratospheric water vapor plays an important role in the Earth system, both through its role in stratospheric ozone destruction and as a greenhouse gas contributing to radiative forcing of the climate. Highly accurate water vapor measurements are critical to understanding how stratospheric water vapor concentrations will respond to a changing climate. However, the past disagreement among water vapor instruments on the order of 1 – 2 ppmv hinders understanding of the mechanisms which control stratospheric humidity, and the reliable detection of water vapor trends. In response to these issues, we present a new dual axis water vapor instrument that combines the heritage Harvard Lyman-\(\alpha\) hygrometer with the newly developed Harvard Herriott Hygrometer (HHH). The Lyman-\(\alpha\) instrument utilizes ultraviolet photo-fragment fluorescence detection, and its accuracy has been demonstrated though rigorous laboratory calibrations and in situ diagnostic procedures. HHH employs a tunable diode near-IR laser to measure water vapor via direct absorption in a Herriott cell; it demonstrated in-flight precision of 0.1 ppmv (1-sec) with accuracy of 5%±0.5 ppmv. We describe these two measurement techniques in detail along with our methodology for calibration and details of the measurement uncertainties. We also examine the recent flight comparison of the two instruments with several other in situ hygrometers during the 2011 MACPEX campaign, in which five independent instruments agreed to within 0.7 ppmv, a significant improvement over past comparisons. Water vapor measurements in combination with simultaneous in situ measurements of \(O_3\), CO, \(CO_2\), HDO, and HCl are also used to investigate transport in the Tropical Tropopause Layer (TTL). Data from the winter 2006 CR-AVE campaign and the summer 2007 TC4 campaign are analyzed in a one-dimensional mixing model to explore the seasonal importance of transport within the TTL via slow upward ascent, convective injection, and isentropic transport from the midlatitude stratosphere. The model shows transport from midlatitudes to be significant in summer and winter, affecting ozone concentrations and therefore the radiative balance of the TTL. It also shows significant convective influence up to 420 K potential temperature in both seasons, which appreciably increases the amount of water vapor above the tropopause.
Terms of Use: This article is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Citable link to this page: http://nrs.harvard.edu/urn-3:HUL.InstRepos:9823970
Downloads of this work:

Show full Dublin Core record

This item appears in the following Collection(s)

 
 

Search DASH


Advanced Search
 
 

Submitters