Show simple item record

dc.contributor.authorKiser, E.
dc.contributor.authorIshii, Miaki
dc.contributor.authorLangmuir, Charles H.
dc.contributor.authorShearer, P. M.
dc.contributor.authorHirose, H.
dc.date.accessioned2012-11-27T16:35:41Z
dc.date.issued2011
dc.identifier.citationKiser, E., Miaki Ishii, Charles H. Langmuir, P. M. Shearer, and H. Hirose. 2011. Insights into the mechanism of intermediate-depth earthquakes from source properties as imaged by back projection of multiple seismic phases. Journal of Geophysical Research Solid Earth 116:B06310.en_US
dc.identifier.issn0148-0227en_US
dc.identifier.urihttp://nrs.harvard.edu/urn-3:HUL.InstRepos:9949241
dc.description.abstractThis study investigates the spatial and temporal distribution of energy release of large, intermediate-depth earthquakes using a modified back projection technique first used to study the 2004 Sumatra-Andaman megathrust event. Multiple seismic phases are included in the back projection analysis, which provides the capability to determine the energy distribution with respect to depth and time. A total of 22 intermediate-depth earthquakes with moment magnitudes greater than or equal to 6.5 are investigated with hypocentral depths between 100 and 300 km. For most of these events, the vertical extent of energy release is either below the resolution of this study \((\leq5 km)\) or slightly above \((\leq15 km)\). This observation agrees with previous studies that find large, intermediate-depth earthquakes have subhorizontal rupture planes. The results also show a significant portion of the events have multiple rupture planes that are well separated in depth. The closeness in time of the ruptures on separate planes and the distance between the planes suggest dynamic triggering where the P waves from the first rupture initiate rupture on the second plane. We propose that a dehydration embrittlement mechanism combined with preferentially hydrated subhorizontal faults can explain the observations of dominant subhorizontal rupture planes and the frequent occurrence of rupture complexity involving multiple subevents.en_US
dc.description.sponsorshipEarth and Planetary Sciencesen_US
dc.language.isoen_USen_US
dc.publisherAmerican Geophysical Unionen_US
dc.relation.isversionofdoi:10.1029/2010JB007831en_US
dash.licenseLAA
dc.subjectback projectionen_US
dc.subjectintermediate-depth earthquakesen_US
dc.titleInsights into the Mechanism of Intermediate-Depth Earthquakes from Source Properties as Imaged by Back Projection of Multiple Seismic Phasesen_US
dc.typeJournal Articleen_US
dc.description.versionVersion of Recorden_US
dc.relation.journalJournal of Geophysical Research Solid Earthen_US
dash.depositing.authorLangmuir, Charles H.
dc.date.available2012-11-27T16:35:41Z
dc.identifier.doi10.1029/2010JB007831*
dash.contributor.affiliatedIshii, Miaki
dash.contributor.affiliatedLangmuir, Charles


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record