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The ‘Hot Hand’
Abstract

The concept of the ‘hot hand’ is highly debated in the fields of

statistics, data science, and psychology. The overwhelming consensus

for the past four decades has generally revolved around the concept

that ‘hot handedness’ is nothing more than a misinterpretation of

randomness in small sample sizes. More recent research indicates that

these conclusions, specific to the shooting performance in basketball,

were founded on flawed analyses, and that a ‘hot hand’ may indeed

exist. However, researchers have yet to successfully identified the ‘hot

hand’ in modern NBA game data, and primarily focus on shooting

data obtained from controlled experiments.

In this work, we investigate streakiness in the context of player

shooting data. Specifically, we develop a novel approach to the

definition of streakiness that accounts for player specific effects. We

then use two multivariate frameworks in the form of logistic regression

and random forests, in order to measure the significance of streakiness

in the context of predicting the outcome of a field goal attempt.

Unlike previous research, we also examine this definition of streakiness

with both pooled models and individual player-specific models. The

results, similar to extant literature conflicted. Although the random

forest models do not identify streakiness as a significant predictor, the
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logistic regressions provide several interesting insights. In particular,

we find that while being ‘hot’ is significant at the .05 level in the

pooled model, it is only inconsistently significant in the player-specific

models. This indicates that individuals are likely to experience a ‘hot

hand’ effect differently, if such an effect exists.
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I never looked at the consequences of missing
a big shot ... When you think about the conse-
quences you will always think of the negative re-
sult.

Michael Jordan

1
Introduction

On January 23rd, 2015, Klay Thompson scored 37 points in a single
-quarter. He did so by shooting 13-13 from the field and 9-9 from
beyond the arc. This inhuman performance was practically unheard
of and nearly impossible from the perspective of many of the greatest
NBA players [19]. Time and time again, the league’s most brilliant
players have ‘shot the lights out’ to the point that teammates and
coaches alike recognize when a certain player is getting ‘hot.’ More
recently, Steph Curry (who is perhaps uncoincidentally, Thompson’s
teammate and fellow ‘Splash Brother’), made 105 three-pointers in a
row at a practice. To put the unlikeliness of this event’s occurrence
into perspective, even if we were to suppose that Steph had an
unrealistically high three-point shooting probability of 80%, if he were
to take 500 consecutive shots in a row, the probability of experiencing
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a streak of similar length is less than 1 in 200 million. Moreover, even
if he took 500 three points shots in a row, every day for the past 20
years, the probability of achieving a streak of comparable length is
0.000039 [5].

The concept of the ‘hot hand’ has been a hotly debated topic in the
fields of statistics and psychology for several decades. Perhaps the
most well-regarded study in this area was conducted by Gilovich,
Vallone, and Tversky (GVT) in 1985. In their paper, “The Hot Hand
in Basketball: On the Misperception of Random Sequences,” GVT
sought to investigate the existence of a hot hand using data from the
Philadelphia 76’ers shooting records (who at the time, were the only
team to maintain accurate shooting data!), free throw records from
the Boston Celtics, and a controlled shooting experiment with Cornell
varsity basketball teams. Ultimately, GVT found no evidence of a
‘hot hand’ in any of the aforementioned data sets, leading them to
classify any detection of streaks as a ‘general misconception of chance’
(Gilovich, Vallone, and Tversky, 1985) [8].

Notably, many players and coaches alike spoke out against the ‘hot
hand fallacy;’ when Red Auerbach, a 16-time NBA champion coach,
read the results, he reportedly said, ”Who is this guy? So he makes a
study. I couldn’t care less.” Unfortunately for Auerbach (and any
like-minded thinkers), for some time, there was little statistical
evidence to support an argument for a hot hand — most research only
further supported the hypothesis posited by GVT [11].

The fascination with the ‘hot hand’ is not purely limited to
basketball. Researchers have also investigated the existence of a hot
hand effect in a variety of other sports. Arthur et al. analyzed the
existence of a hot hand effect using modern MLB pitching data on
fastball velocities. Ultimately, Arthur et al. were able to leverage a
Hidden Markov Model to predict when a player might be hot or cold.
Moreover, they were able to determine whether a particular pitcher
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would be able to maintain a hot streak, or whether they would go
cold. Indeed, using only two months of MLB pitching data, their
model was able to better predict the velocity of future pitches better
than the pitcher’s average velocity across the remaining 6-month
season. Perhaps most interestingly, they were able to find that if a
pitcher was ‘hot,’ batters were much less likely to make hits or gain
extra bases [2].

Otting et al. also explored the possibility of a ‘hot shoe’ effect in
soccer within the context of penalty shots based on data from the
German Bundesliga (one of Europe’s premier soccer leagues). They
utilized regularized Hidden Markov Model to model the latent forms
of the players, incorporating the heterogeneous skill levels of penalty
takers and goalkeepers along with a LASSO penalty. Ultimately, their
results indicated that different forms of players may be tied to
different states in the HMM, which provides evidence for the existence
of a ‘hot shoe’ effect [20].

1.1 Review of Existing Literature

In recent years, researchers have discovered new evidence for the hot
hand in basketball. Of particular interest is a paper written by Miller
and Sanjurjo (2018) that identifies a flaw in GVT’s statistical
analyses. Specifically, they proved that for finite sequences of i.i.d.
binary data, the proportion of successes following a streak of successes
occurs with a probability less than the overall probability of success
for the sequence. A simple example of this bias can be seen in Table
1.1.1.

After correcting for this “streak selection bias” in GVT’s original
data sets, Miller and Sanjurjo were able to find statistically significant
evidence for a ‘hot hand effect.’ Of particular interest was the fact
that in addition to detecting a hot hand effect at the individual level,
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Sequence Proportion of H’s that follow one or more heads
TTT -
TTH -
THT 0
HTT 0
THH 1
HTH 0
HHT 1

2

HHH 1
Expectation : 5

12

Table 1.1.1: An illustration of the bias identified by Miller & Sanjurjo. [12]

Miller and Sanjurjo also found a pooled hot-hand effect across the
entire sample. Indeed, they found an average hot hand effect across all
players that represented a substantial increase in terms of field goal
percentages. That being said, the effect was not heterogeneous across
players, indicating that there is an incentive for coaches and players
alike to identify which players may experience a hot hand effect [12].

Miller and Sanjurjo continued to explore the potential of a
hot-hand effect in a variety of different contexts. In 2015, they
investigated the existence of the hot-hand effect in the NBA 3-point
context. Generally speaking, the NBA 3-point contest is possibly one
of the most ideal settings for studying the hot hand effect, as the
environment mitigates any confounding factors that might arise in a
typical NBA game. In the 3-point contest, players are given 60
seconds to shoot 25 balls from 5 different positions along the 3-point
line (in other words, they shoot 5 balls from each position). This
effectively eliminates variability in distance, defensive pressure,
offensive opportunities, etc., while still preserving a comparable
amount of pressure to a typical NBA game. In this paper, Miller and
Sanjurjo leveraged nearly 34 years of three-point contest data and
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applied a correction for the streak selection bias they identified in
their first paper. Ultimately, Miller and Sanjurjo were able to select a
number of players that experienced a hot-hand effect. Interestingly,
similar to their first experiment, they also found a pooled hot-hand
effect, despite heterogeneity in the magnitude and sign of the effect
across players. Indeed, on average, Miller and Sanjurjo found that
players shot anywhere from +5 to +9 percentage points better on a
shot following a streak of hits [13].

Miller and Sanjurjo also conducted an improved field experiment
similar to that of GVT conducted in 1985. This study had two
phases, one in which players made only shots, and a second (6 months
later) in which players placed bets on their shots before making them
— in order to identify whether players could predict their own
‘hot-hand’ effect. Miller and Sanjurjo’s study design improved upon
GVT’s in numerous ways. Phase one of the study allowed players to
focus on purely shooting, whereas GVT potentially interrupted the
rhythm of shot attempts by asking players to place bets between each
shot. More importantly, players were asked to shoot from the same
location, rather than being forced to move after each shot attempt.
Finally, Miller and Sanjurjo also collected substantially more data, in
that participants took 300 shots, as compared to 100 in GVT.
Overall, the results yielded a strong hot hand effect (> 9 percentage
points) in certain individuals. Similarly to previous papers, they were
also able to find a pooled hot hand effect across all players. Moreover,
Miller and Sanjurjo found further evidence for the hypothesis that
individuals and teammates may be able to identify and exploit
tendencies to become ‘hot’ [15].

Other researchers have also investigated the ‘hot hand’ effect in
controlled settings. Lantis and Nelson investigated the hot hand using
NBA data on both free throws and field goal attempts. Overall, they
found a small but persistent hot hand effect in free throws, with a
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magnitude of two to four percentage points. They also found that
there was no hot hand effect associated with field goals, and that if a
player makes three field goal attempts in a row, they are actually less
likely to make their next field goal attempt by 0.6 percentage points.
Notably, the paper does not account for the bias identified by Miller
and Sanjurjo, indicating that the small hot hand effect identified in
free throw shooting, as well as the insignificant hot hand effect in field
goals could be more substantial in magnitude [9].

Arkes (2010) also examined the hot hand effect in the context of
free throw shooting. Most prior studies tested for the effect with a
univariate framework, which may have lacked the sufficient statistical
power to detect the ‘hot hand.’ As a result, Arkes attempted to utilize
a pooled logistic regression framework with individual fixed-effects in
order to increase statistical power, while also controlling for separate
players’ abilities. Ultimately, Arkes found that if a player hits the first
free throw, they are 2-3 percentage points more likely to hit the
second free throw [1].

Further research has been completed on perceptions of the ‘hot
hand.’ In their 2017 paper, Miller and Sanjurjo found that
experienced players were actually capable of predicting their own ‘hot
hand’ effect, a corollary of their original 2014 article focusing on the
section of GVT’s paper in which professional basketball players bet on
themselves. After correcting for the streak selection bias, they found
expert players were capable of predicting shot outcomes at a rate
better than expected. They theorize that this may have come as a
result of players’ belief in the hot hand — in other words, because of
their belief in the hot hand, players tend to automatically place bets
after successes [14].

Interestingly, other studies have found a similar result in that
players are more willing to ‘bet’ on themselves when they are on a
streak, and take more risky shots following a series of made field
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goals. Csapo et. al. elected to measure NBA shot difficulty by three
different metrics, shot distance, shot type, and shot angle. They
found that the outcome of previous field goals had a significant effect
on shot selection. If a player made more consecutive makes, shot
difficulty increased with regards to the three aforementioned metrics.
Similarly, with consecutive misses, players took less difficult shots.
The results also implied that performance may actually improve
during hot streaks, as shooting accuracy did not appear to decline,
while shot difficulty increased [6].

Not all research agrees with Miller and Sanjurjo’s findings. Daks,
Desai, and Goldberg employed Miller and Sanjurjo’s methodology to
further examine the hot hand effect, but this time in the context of a
few specific players, Stephen Curry, Klay Thompson, and Kevin
Durant. Daks et al. also utilized modern NBA data from the 2016-17
regular season. In order to correct for the streak selection bias, Daks
et al. performed 10,000 permutation tests on each game-long set of
data for each player, and computed the following test statistic:

tk = tk,hit(X)− tk,miss(X)

wherein X is a binary string of game data wherein ‘0’ represents a
missed field goal, and ‘1’ represents a made field goal, k is the length
of the streak, tk,hit which is the conditional fraction of hits given k

prior hits, and tk,miss is the conditional fraction of misses given k prior
misses. This can be thought of as the proportion of hit streaks
followed by a made field goal less the proportion of miss streaks
followed by a made field goal. Ultimately, despite the seemingly
hot-handed nature of these players on the court, Daks et al. were
unable to find a statistically significant overall hot hand effect for any
of these players (although they were able to find a statistically
significant effect in certain games) [7].
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Wang and Fan implemented a simple linear regression model on
modern NBA player data wherein the first two independent variables
each correspond to a players’ shooting percentage in consecutive
games, and the dependent variable is the shooting percentage in the
third game. They found that the accuracy of the model was below
40% and rejected the existence of the hot hand phenomenon [18].

McNair et al. also attempted to find evidence of the hot-hand effect
in larger modern NBA datasets using the same test statistic as Miller
& Sanjurjo (see above) but only with streaks of size one. Overall,
after replicating previous studies, including GVT (1985), they found
no evidence of a hot-hand effect in real-world NBA data. Moreover,
the authors found no evidence for the notion that players on a hot
streak will take more difficult shots (often referred to as a ‘heat
check’), although the authors acknowledge that determining patterns
in shot difficulty is extremely difficult. Interestingly, the authors do
not attempt a permutation test similar to that outlined in Miller and
Sanjurjo (2014) [10].

Other research provides some evidence to the contrary. Ritzwoller
and Romano studied permutation tests of the null hypothesis of
randomness based on a similar test statistic to Daks (2017). The
asymptotic distributions of these test statistics and permutation
distributions were characterized under randomness, under both a
general class of stationary processes and Markov chains, allowing the
researchers to determine local asymptotic power. The results were
then applied in an attempt to find evidence for the hot hand effect. In
one of the trials, Ritzwoller and Romano were able to show that one
shooter had a shooting pattern that was inconsistent with
randomness. These findings indicated that a larger data set is needed
to determine whether a significant deviation from randomness occurs
for “streak” players. Moreover, their findings necessitate a direct test
of the hot hand fallacy [16].
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Similarly, Chang S.C. used NBA player tracking data from the
2015-2016 season to analyze top-players’ performance with the
intention of identifying any possible hot hand effect. An examination
of the results led Chang to conclude that more research is needed to
properly investigate the hot hand effect. Moreover, given that players
participate in different numbers of games, Chang suggested that a
mixed model or hierarchical model be used. [4].

The vast majority of literature examining the hot hand in
basketball assumes that shot selection is independent of how hot or
cold the player believes themselves to be. Bocskocsky, Ezekowitz, and
Stein leverage player tracking data and shot tracking data to show
that when players perceived themselves as hot, they were not only
more likely to take more difficult shots, but were also more likely to
be more heavily defended by the opposing team, indicating that these
variables are dependent. After correcting for shot difficulty, it was
estimated that a hot hand effect was present with a magnitude of 1.2
percent increase in shot accuracy for each prior field goal made.

Similarly, Pelechrinis et al. considered the streak selection bias
correction implemented by Miller and Sanjurjo and applied it to
real-world basketball data, while also taking shot difficulty into
account. This data was obtained from the SportVU optical tracking
system for both the 2013-14 and 2014-15 seasons, resulting in a data
set comprising roughly 400,000 shot attempts. Pelechrinis et al. not
only applied the permutation test to remove small sample bias but
also created a model for shot quality. To do-so, they created a
feedforward neural network with four hidden layers; ultimately, this
model had an accuracy of 66% with regards to shot-make probability.
Given the sequence of shots and newly generated shot difficulty
vectors, Pelechrinis et al. then simulated the permutation test on the
sequence of shots, and were able to find significant levels of
streakiness. More specifically, of the 153 players eligible to be
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examined, 24 had a statistically significant streakiness effect.

1.2 Identifying a Gap in the Research

While the results from Miller and Sanjurjo were certainly compelling,
the results have proven to be difficult to replicate using modern NBA
datasets [7, 13]. Other approaches (which are outlined above) have
generally found that streakiness is either insignificant or has little
impact on field goal outcome. One commonality between these papers
is that they do little to investigate hot-handedness at the individual
player level. Most current literature uses the same test statistic on
every player [7, 13], which does not take any player-specific effects
into account at all.

In this paper, we posit that such approaches may not be robust
enough to capture the effect of streakiness in shooting. Indeed, if a
‘hot hand‘ effect exists, it should be defined such that it is relative to
a player’s ability to make a shot. After all, an average shooting night
for an NBA superstar might be a ‘hot’ night for a more typical NBA
player. As a result, we elected to investigate ‘hot-handedness’ in the
context of player-specific models, each of which contains fixed effects
for its respective player. Such models would allow us to differentiate
standards for streakiness on a player-by-player basis, while also giving
perspective on which specific players might be, on average, more likely
to experience a ‘hot hand’ effect, unlike the pooled models used by
Arkes and Bocskocsky [1, 3].

We hypothesized that this approach would allow us to gain insight
into how streakiness factors into a player’s field goal percentage. We
also anticipate that, should a ‘hot hand’ effect exist, we may be able
to use our results to classify players into different categories of
‘streakiness.’

10



1.2.1 Research Questions

1. Can we create models for field goal percentage that incorporate
individual fixed effects and streakiness?

2. Can we determine how significant streakiness is in predicting
field goal outcome at an individual level?

3. How might we use evidence of a ‘hot hand’ effect, if any, to
classify players as ‘streaky’ or ‘not streaky’?

11



2
Methodology

2.1 Dataset

We use a data set comprised of modern NBA play-by-play data
(2015-2020) from Kaggle, a popular site that hosts a number of data
sets. The data set was scraped from Basketball Reference, which
hosts several years of play-by-play data [17].

The play-by-play data contained a number of plays that were not
initially relevant to the exploratory data analysis. As a result, all
plays were removed with the exception of shots. Given that free
throws were also counted as a separate category of shot, they were
either re-categorized such that they fell under the normal shot type
category or excluded from the data set, depending on the analysis that
was being conducted. For example, when replicating other studies, we
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include free throws to remain consistent with the literature, but our
own methods do not incorporate free throws into the analysis.

We define a streak as two or more makes in a row. Each streak is
assigned an identifier between [1, . . . k], where k is the last element in
the streak. This number represents the numerical position of each field
goal attempt within a streak. Notably, streaks are reset on a per-game
basis, such that streaks do not extend between different dates.

2.2 Exploratory Data Analysis

We first investigate different field goal percentages for each shot taken
by a player given k successive makes. We generate a series of charts,
wherein overall field goal percentage for the season is represented by a
red line, and subsequent make probabilities after k successive makes
are depicted as a line graph, wherein k = 1 is equivalent to the first
shot after a make, k = 2 is first shot after two makes, and so on and
so forth (see Figure 2.2.1). While a selection of studies included free
throws in their calculation of field goal percentages, free throws are
excluded from the calculations herein, so as to remain consistent with
the way the NBA determines field goal percentage. Note that there is
some variability between players’ field goal percentage calculated here
and players’ official field goal percentage as calculated by the NBA.
This difference is likely due to missing data, and appears to vary by
around half a percentage point on average.

As expected from the results of previous research [8, 13], most of
these players experience a decline in field goal percentage as they
experience increasingly longer streaks (see Figure 2.2.1). There are,
however, a few notable exceptions. James Harden, then playing for
the Houston Rockets, showed significant increases in field goal
percentages as streaks increased in length, with a jump in efficiency of
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Figure 2.2.1: Shooting percentages given k previous makes for six selected
high volume shooters in the 2016-2017 NBA season. Red line corresponds to
overall percentage. Blue line corresponds to field goal percentage as a func-
tion of number of made field goals in a row.

≈ 15% over their average field goal percentage. Perhaps the most
extreme example, however, was Klay Thompson, who appears to
consistently experience higher field goal percentages, even after a
single made shot (see Figure 2.2.2).

2.3 Replicating Miller and Sanjurjo

Given this newfound information with regards to increases in field
goal percentage over time in certain players, we wanted to examine
these players’ streakiness in the context of the latest research
conducted by Miller & Sanjurjo, as well as Daks, Desai, & Goldberg
[7, 13]. As a reminder, Miller and Sanjurjo identified a bias in the
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Figure 2.2.2: Field goal percentage for Klay Thompson given k previous
makes. Red line corresponds to overall percentage. Blue line corresponds to
field goal percentage as a function of number of made field goals in a row.
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calculation of make probabilities that was directly caused by the
selecting streaks from a small sample size. Daks et al. attempted to
remedy this small sample size bias by performing 10,000 permutation
tests on each game-long set of shooting data for each player by
computing the following test statistic during each run.

tk = tk,hit(X)− tk,miss(X).

Here X is a binary string of game data, k is the length of the
streak, tk,hit is the conditional fraction of hits given k prior hits, and
tk,miss is the conditional fraction of misses given k prior misses. For
clarification, consider the following binary string:

111010110110111.

Assuming k = 2, we see that there are 4 instances of 11 in the
above binary string. Two instances of 11 are followed by a made field
goal, so tk,hit =

2
5
. Three instances of 11 are followed by a missed field

goal, so tk,miss =
3
5
. Thus, tk = 2

5
− 3

5
= −1

5
.

This method was implemented in Python as specified by Daks et.
al: the input was binary strings representing field goal attempts, and
then permuted the input 10, 000 times, calculating the test statistic
for each permutation. Finally, we compared the test statistic from the
original string to those of the bootstrapped data to calculate the p

value. The model was then run it on a subset of the top players in the
NBA, as defined by shooting volume. The results herein were then
confirmed to be similar to those of the original paper by Daks et. al.,
in that no players were identified as having a statistically significant
‘hot hand’ effect [7],

In Daks et. al. the researchers investigate the possible existence of
a ‘hot hand’ effect in one of Klay Thompson’s streakiest games — a
famous moment in NBA history when Thompson scored 60 points on
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Figure 2.3.1: Histogram of test statistics for Klay Thompson’s 60-point
game. Red area indicates the critical region in which the test statistic would
be statistically significant. Blue line corresponds to the test statistic as calcu-
lated for the original series

21-33 shooting in 29 minutes (and also with a mere 11 dribbles!). His
shooting in this game can be represented by the following binary
string (note that Daks et. al. elected to include free throws in their
calculations)

11011110010111111001110111101110111101010101.

In order to ensure fidelity with the original paper’s results, the
permutation test method was conducted on these shooting data, with
k = 2. The empirical distribution of tk generated by our Python
implementation achieved results that were equivalent to the original
paper (see Figure 2.3.1).

Notably, despite the exceptional level of Thompson’s playing this
game, the p value generated was far from exceptional. Indeed, the
result of p = 0.8057 indicated that the observed statistic for the game
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was exceeded by 80.57% of that of the 10, 000 permuted binary
outcome strings, indicating that there was no hot-hand effect present
in this game.

It is surprising that there was a notable lack of ‘streaky’ games
found — especially when the outputted binary strings appeared to be
clearly ‘streaky.’ For example, 60 point game from above represents an
extraordinarily ‘hot’ shooting night, even for an incredibly talented
player like Klay Thompson. Given this, we elected to dig deeper into
the potential limits of this test statistic by running the method on an
outcome that was intentionally created to be an obviously ‘streaky’
shooting night for a player:

011111111111111111111011111111111111111111101111111111.

If there were ever to be a ‘hot’ night for a player, the above would
clearly be representative of one, given that such a shooting night is
statistically improbable to occur (even for the greatest NBA players of
all time). Even given that Daks et. al. relied on no prior data in their
methodology (or even player-specific data), one would imagine that
the test statistic would have determined the existence of a ‘hot hand’
effect in the above example. Instead, however, the p value generated
by the permutation test was once again insignificant, with p = .4709

(see Figure 2.3.2).
This result indicates that there may be some limitations to the

permutation approach employed by Miller & Sanjurjo. Indeed, even if
a player was found to have had an extremely ‘hot’ night similar to
that of the one depicted above, the result from the permutation
approach would still yield an insignificant result. As we will explore in
future sections, this also indicates a need to include player-specific
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Figure 2.3.2: Histogram of test statistics for ‘streaky’ game. Red area indi-
cates the critical region in which the test statistic would be statistically signif-
icant. Blue line corresponds to the test statistic as calculated for the original
series

fixed effects — as indeed, this test-statistic is completely agnostic to
individual players’ typical performance. In other words, this example
warrants an entirely different approach to the definition of streakiness,
in which ‘heat’ is measured relative to a player’s baseline performance.

2.4 Developing a Novel Approach

Most research in this field relies on the creation of novel test statistics
to model streakiness in shooting. Instead, we seek to leverage
supervised classification algorithms in an attempt to measure the
importance of being on a hot streak in predicting player shot
outcomes. More specifically, we utilized a combination of logistic
regression and random forest algorithms in an attempt to quantify the
importance of streakiness in predicting shot outcomes. The general
approach is similar to Arkes and Bocskocsky, in that we utilize a

19



multivariate logistic regression; that being said, our approach quantify
streakiness differently. Bocskocsky and Arkes both consider whether
any of the last k shots were a made field goal, and both make use of a
pooled regression. Our approach utilizes indicators that describe
whether only the last shot was a made field goal, and if so, what
position it occupied in a streak of made field goals. Moreover, while
Bocskocsky and Arkes both utilize a pooled (league-wide) logistic
regression, we develop separate models for each individual player,
such that we can gain greater insight into how ‘hot-handedness’ may
materialize in individuals [1, 3].

2.4.1 Data Cleaning and Preparation

Before running logistic regressions, it was necessary to manipulate
some of the variables in the data set such that the results could be
properly interpreted after running our models. For instance, given
that streak count is more of a categorical variable than a numerical
variable, we elected to create a one-hot encoding of the variable in the
dataframe. The following features were used in my models:

• ShotDist - The distance (in feet) from the basket from which
the shot was taken

• StreakMake_k - A one-hot encoding for the kth shot in a
streak of made field goals. We only include up until the 4th shot
in a streak, since longer streaks likely occur too rarely to be
identified as significant, and coefficients are unlikely to be
reliably estimated.

• IsHome - A binary variable for whether the game is a home
game or an away game for the player in question

• Differential - The difference between the player’s team score
and the opposing team’s score at the time of the shot.
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2.4.2 Variable Selection Considerations

With regard to the reasoning behind choosing these variables, my
thinking was primarily aligned with creating an interpretable model.
The rationale behind this decision was as follows: given that our goal
was not necessarily to create the most accurate model for predicting
shot outcomes, but to understand the effect of being on a streak of
made field goals, it was prudent to create a simple model so as to
make the impact of being on a ‘hot streak’ as interpretable as possible.

The selected variables and models used hereafter were selected to
aid interpretability. All predictors (besides the streak indicators) that
were included were those that would influence the ‘pressure’ on a
player while engaging in a field goal attempt. For example, shot
distance is a proxy for how difficult it might be to make a shot
(generally speaking, the further away a shot is taken from, the harder
it becomes to make the shot). ‘IsHome’ and ‘Differential,’ on the
hand, reflect the mental pressure that the player might be
experiencing. By including these predictors, then, we are capable of
controlling for players shooting worse at away games or shooting
worse when their team is winning (or losing) by a significant amount.
As seen in the results, even this limited group of predictors was
enough to get within reach of the best performing models for shot
outcome in the present literature.

In order to ensure that models are not given any information about
the outcome of the shot in question, the count of the streak is shifted
down by one (if the shot was identified as the kth element in a streak,
it would be possible for the model to discern hidden information
about the outcome of the shot). It should be noted that these models
include shot data from all available years (2015-2020). This was a
decision that may need to be revisited in future research, as
basketball evolves at a relatively rapid pace, particularly at the

21



professional level. For example, in 2015, roughly 26% of shots were
taken from beyond the three-point line. In the current season,
three-point attempts comprise 39% of field goal attempts.

index Dist s_1 s_2 s_3 s_4 Home Diff
Dist 1.00 0.01 0.06 0.03 0.03 0.03 0.07
s_1 0.01 1.00 -0.22 -0.13 -0.08 -0.00 0.03
s_2 0.06 -0.22 1.00 -0.08 -0.05 0.01 0.07
s_3 0.03 -0.13 -0.08 1.00 -0.03 0.03 0.05
s_4 0.03 -0.08 -0.05 -0.03 1.00 0.02 0.05
Home 0.03 -0.00 0.01 0.03 0.02 1.00 0.11
Diff 0.07 0.03 0.07 0.05 0.05 0.11 1.00

Table 2.4.1: Correlation between features. Note that s_k is analagous to
StreakMake_k

.

When analyzing the correlation between covariance parameters of
the logistic regressions (both pooled and player-specific), we found the
condition number was considerably higher than expected, and the
determinant was extremely small. This warranted an investigation
into the correlation between the features inputted into the model.
Notably, there was little evidence of multicollinearity between the
predictors (see figure 2.4.1). Indeed, the highest absolute correlation
observed was between the streak 0 and streak 1 indicators, at −.65,
and the magnitude of most other correlations were below .1. Given
this information, we did not modify the dataset before feeding it to
our models, nor did we use any particular methods to reduce
multicollinearity in the dataset.

2.4.3 Pooled Logistic Regression

We began by running a logistic regression on a pooled player dataset,
so as to identify any ‘macro’ trends across a wide sample of players.
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Shooting data from the top players by shooting volume was merged
and cleaned as outlined above. Then an 80%-20% train-test split was
generated at random. After cleaning the data, generating streaks for
each player, and combining each individual player’s data into a single
dataframe, there were 227, 786 observations in the train dataset.
Given that we wanted to primarily investigate ‘hot-handedness,’ we
left indicators for the ‘cold’ hand out of the model to isolate the hot
hand effect, as we found that including the ‘cold hand’ indicators
reduced model interpretability, in that all predictors became
insignificant.

All logistic regressions were run using both the statsmodels and
sklearn packages. The statsmodels model offered convenient access
to summary statistics, and the sklearn model offered convenient
access to other helpful sklearn methods. Any discrepancies between
the statsmodel and sklearn models were found to be insignificant.
Given that logistic regression does not require our dataset to be
scaled, the dataset was not transformed beyond the steps delineated
in the data cleaning and preparation section. Moreover, the logistic
regressions were all run with default parameters, with the exception of
the maximum number of iterations, which was increased to 20, 000 to
ensure that all models converged.

2.4.4 Player-specific Logistic Regression

The natural next step in this investigation was to determine whether
the outcomes found in the pooled regression were representative of
performance at the individual player level. We again sampled the top
85 players by shooting volume, and ran independent logistic
regressions on each player. Similarly to the pooled logistic regression,
we used the same set of predictors, and created an 80%− 20%

train-test split. On average, after cleaning, each of the top 40 players
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were associated with roughly 5, 500 observations.
Accuracy and F1 score on train and test data sets were used as a

proxy for model performance. These metrics were primarily used to
determine whether the models were sufficiently accurate to the point
that measures of predictive significance could be considered in our
analysis, as we were interested in investigating the ‘hot hand’ effect,
rather than creating the most accurate model for shot outcomes.

2.4.5 Random Forest Hyperparameter Tuning

We conducted hyperparameter tuning on three of the parameters to
the random forest model. Specifically, we attempted all possible
combinations of the following with 10-fold cross-validation, and
selected the parameters with the highest validation set performance.
The cross-validation was conducted by using the sklearn
GridSearchCV method.

1. max_features: The maximum number of features considered
in a split, set = [1, 2, 3]

2. max_depth: The maximum depth of the trees in the random
forest, set = [1, 3, 5, 10, 50, None], where None indicates no
maximum depth

3. n_estimators: The number of trees in the forest,
set = [10, 25, 50, 75, 100, 200]

After tuning with cross-validation, it became clear that a
max_depth value of 5, a max_features value of 2 (which is
equivalent to using the square root of the number of features), and a
n_estimators value of 100 performed the best with regards to
validation performance. Given the complexity of tuning these
parameters for all of the player models, and the risk of potentially
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overfitting, we utilize these tuned hyperparameters for both the
pooled random forest and the player-specific random forest.

2.4.6 Pooled Random Forest

In the spirit of identifying how important hot-handedness might be
for prediction, we elected to run a random forest on the same,
simplified dataset as was used for the logistic regressions. All random
forests were run using the sklearn package, and were run with the
specifications determined in section 2.4.5. The training dataset was
the same as the one specified in section 2.4.4, and had 227, 786

observations. We intended to use plots of variable importance and
permutation importance to identify the relative importances of each
predictor to the model. In this way, if any StreakMake feature
appeared to have a high ‘importance,’ we could consider this to be
evidence for the ‘hot hand.’ Similarly to the logistic regression, we
intended to use metrics of accuracy and F1 score to assess the
interpretability of the results. Since interpretability is our main focus,
we did not attempt to improve the accuracy of the model far beyond
a set baseline accuracy.

2.4.7 Player-specific Random Forest

Individual random forest models with the same specifications as
delineated in section 2.4.5 were then run on the top players by
shooting volume. Once again, we utilized the same train dataset as
the individual logistic regressions. Similarly to the pooled random
forest, we utilized variable importance and permutation importance to
determine the relative importance of each predictor to the model and
baseline metrics accuracy and F1 scores to judge the interpretability
of these results.
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3
Results

There is not an established best-in-class method for predicting shot
outcomes. Unfortunately, although we conducted a rigorous search,
we were unable to much existing information in the existing literature
on modeling shot accuracy. Based on a thorough study of available
methods, and the results from a Kaggle competition focused on
predicting the outcome of shots in the NBA, we found that around
62% accuracy might be a reasonable bar for whether model results are
interpretable. Given the significant variability in shot-taking
conditions during a typical NBA game, including, but not limited to
defensive pressure, shooting form, etc., it seemed unrealistic to create
a model capable of achieving a significantly higher rate of accuracy.
Moreover, the logistic regression and random forest models provided
comparable accuracy while providing interpretable results moreso
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coef std err z P> |z| [0.025 0.975]
ShotDist -0.0307 0.000 -90.252 0.000 -0.031 -0.030
StreakMake_1 0.1571 0.009 16.548 0.000 0.139 0.176
StreakMake_2 0.1532 0.013 11.432 0.000 0.127 0.180
StreakMake_3 0.1796 0.020 9.203 0.000 0.141 0.218
StreakMake_4 0.1890 0.029 6.488 0.000 0.132 0.246
IsHome 0.2315 0.008 30.735 0.000 0.217 0.246
Differential -0.0007 0.000 -1.514 0.130 -0.002 0.000

Table 3.1.1: Pooled logistic regression considering league-wide data.

than other more complex algorithms considered by others.

3.1 Pooled Logistic Regression

The first regression utilizes pooled player data, and the results of the
model are presented in Table 3.1.1. The accuracy of this model was
around 59% on the test dataset. Notably, all streak count features
have a statistically significant (at the 5% level) positive impact on the
log-odds ratio, indicating the presence of a ‘hot-hand’ effect, at least
for the pooled sample. Given that there was a possibility that only
certain players may experience ‘hot’ shooting nights, the next step in
this analysis was to explore these effects in the context of individual
players.

Notably, although the streak count variables were all statistically
significant, the coefficients for these features were all positive. In
other words, this would actually provide support for the existence of a
hot hand effect, indicating that being on a ‘hot streak’ actually results
in an increase in the log odds of a player making a field goal.
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3.2 Player-specific Logistic Regression Models

We selected the top 80 players by shooting volume and ran separate
logistic regressions on the features enumerated in section 2.3.1.
Interestingly, there was significant variation with regard to the
potential existence of a ‘hot-hand’ depending on the player. The
results for certain players, such as Stephen Curry or Klay Thompson
found StreakCount to be an incredibly unimportant predictor.
However, these models also had poor accuracy: the model for Curry’s
shooting achieved 58% accuracy on the train dataset and 55%

accuracy on the test dataset.
Performance of the models with regards to accuracy did not stray

far from that of the models discussed previously (see Table A.1.1 for
more details). With regards to the presence of streakiness in the data,
again, the majority of results did not identify being on a streak of
makes to be a significant predictor. This was found to be inconsistent
with the pooled results, where all streakiness predictors were found to
be extremely significant (p < 0.05).

Of the models that did identify streakiness to be a significant
predictor, the coefficients were generally positive. For comparison, the
StreakMake_k coefficients for each player were aggregated and are
shown as whisker plots in Figure 3.2.1. The IQR of StreakMake_k
coefficients, which ranged from 0.0 to ≈ 0.25 for all streak indicators
and is greater than zero for all streak counts — only the bottom
quartile is less than zero. Interestingly, the coefficients were relatively
steady across streak indicators, with only a slight downward tick in
the coefficient from the first streak indicator to the second, followed
by an upward tick from the second streak indicator to the third. As
expected, the median values of the make streak indicator coefficients
are aligned with the coefficients we found in the pooled logistic
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Figure 3.2.1: Boxplot of coefficients for makestreak indicators. Value of coef-
ficient is depicted on the y axis. Results are aggregated from separate logistic
regressions for the top 80 players by shooting volume.

regression.
As seen in Figure 3.2.2, the statistical significance of the streak

indicators also experienced substantial variance between both players
and indicators. Indeed, the median significance level for all predictors
is well over p = 0.05. Of interest is the fact that the p values for the
second indicator, StreakMake_2, are generally lower than that of
the first indicator. One explanation may be that players that often
make it to a streak of two shots in a row are more likely to be ‘hot
players’ than those who only make it to a streak of one shot in a row.
The statistical significance of each predictor deviated substantially
from the results we received from the pooled logistic regression. In the
pooled logistic regression, all streak indicators were statistically
significant at the 0.05 level, whereas a majority of player-specific
models found the predictors to be insignificant.

One possible explanation for the difference in p-value between the
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Figure 3.2.2: Boxplot of p values for makestreak indicators. Value of coeffi-
cient is depicted on the y axis. Results are aggregated from separate logistic
regressions for the top 80 players by shooting volume.

pooled regression and the player-specific regressions is that the
player-specific regressions simply do not have enough statistical
power. In the literature, several papers, including Arkes (2010),
indicated that a small sample size might negatively influence our
ability to detect a ‘hot hand’ effect. Given that our sample sizes of, on
average 5, 500 shots for individual players, is considerably smaller
than that of the sample sizes used in the pooled logistic regressions in
Arkes (2010) and Boc et. al., it is possible that we lack the requisite
statistical power to consistently detect ‘hot handedness’ [1, 3].

There were still some models for players that indicated possible
hot-handedness. For example, the model for Rudy Gobert (see Table
3.2.1) found streak indicators to be extremely significant predictors
(with positive coefficients), indicating a potential hot hand effect.

Coefficients for the top 30 players by shooting volume are depicted
in Table 3.2.2, wherein green text color indicates that the predictor
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coef std err z P> |z| [0.025 0.975]
ShotDist -0.2148 0.022 -9.675 0.000 -0.258 -0.171
StreakMake_1 0.8256 0.108 7.639 0.000 0.614 1.037
StreakMake_2 0.7669 0.129 5.949 0.000 0.514 1.020
StreakMake_3 0.5524 0.161 3.431 0.001 0.237 0.868
StreakMake_4 0.9822 0.223 4.399 0.000 0.545 1.420
IsHome 0.8336 0.088 9.489 0.000 0.661 1.006
Differential 0.0032 0.005 0.665 0.506 -0.006 0.013

Table 3.2.1: Logistic regression on Rudy Gobert’s shooting data

was statistically significant in the model, and red text color indicates
that the predictor was not statistically significant in the model.
Generally, when coefficients were negative, they did not tend to be
statistically significant. Notably, players with statistically significant
results tended to be similar in terms of playstyle, in that they
generally tend to take shots closer to the basket. See the results for
Giannis Antetokounmpo, Karl Anthony Towns, Anthony Davis, Andre
Drummond, and Rudy Gobert (all of whom are known for playstyles
that involve attacking the rim) in Table 3.2.2 as an example.
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Player Streak 1 Streak 2 Streak 3 Streak 4
0 J. Harden - HOU 0.0405 0.1019 0.0403 −0.0052
1 G. Antetokounmpo - MIL 0.2949 0.3845 0.4554 0.1761
2 D. Lillard - POR 0.0354 0.1063 0.1374 0.3491
3 B. Beal - WAS 0.2567 0.1233 0.2518 −0.1545
4 R. Westbrook - OKC 0.1315 0.0262 0.3426 0.1741
5 C. McCollum - POR 0.1753 −0.0517 −0.0094 0.4262
6 D. Booker - PHO 0.1865 0.1001 −0.0084 −0.1525
7 L. Aldridge - SAS 0.237 0.2348 0.1838 0.4726
8 K. Durant - GSW 0.3498 0.0759 0.4729 0.2485
9 A. Wiggins - MIN 0.0151 0.1737 −0.0106 0.2562
10 K. Towns - MIN 0.3533 0.2252 0.4093 0.4196
11 S. Curry - GSW 0.1846 −0.0697 −0.272 −0.1551
12 A. Davis - NOP 0.2748 0.399 0.5673 0.4825
13 K. Walker - CHO 0.1536 0.1316 0.1869 0.382
14 D. Mitchell - UTA 0.0054 0.0474 0.2006 0.1578
15 J. Embiid - PHI 0.1592 0.2659 −0.0226 0.1297
16 K. Thompson - GSW 0.0745 0.1829 0.3025 0.2026
17 L. James - CLE 0.4258 0.4382 0.516 0.2076
18 J. Holiday - NOP 0.2163 0.2546 0.2158 0.0884
19 K. Lowry - TOR 0.1095 0.0074 −0.2243 −0.0729
20 K. Middleton - MIL −0.0097 −0.0146 0.0641 0.2187
21 A. Drummond - DET 0.4527 0.4059 0.4827 0.5826
22 L. Williams - LAC 0.0188 0.1334 −0.1189 0.4195
23 J. Murray - DEN 0.0286 0.1176 0.229 0.228
24 D. DeRozan - TOR 0.2158 0.1808 0.162 0.2878
25 E. Gordon - HOU −0.0004 −0.0798 0.1551 −0.1338
26 E. Fournier - ORL 0.1491 0.0363 −0.0286 0.1567
27 A. Gordon - ORL 0.1259 0.3039 0.133 0.5278
28 S. Dinwiddie - BRK −0.0726 −0.0063 0.2433 −0.2051
29 R. Gobert - UTA 0.8256 0.7669 0.5524 0.9822

Table 3.2.2: Streak indicator coefficients for the player-specific logistic re-
gression. Green indicates that the coefficient was significant in its respective
model, and red indicates that the coefficient was not significant in its respec-
tive model.
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3.3 Pooled Random Forest

The random forest achieved 62.5% accuracy on the pooled test
dataset after hyperparameter tuning (notably, this was better than
the performance achieved by the logistic regression). The F1 score is
quite low, however, at just 48.5. Unlike logistic regression, the plot of
variable importances indicated that the hot-hand indicators that we
generated were not important relative to the other predictors in the
model (see Figure 3.3.1).

Figure 3.3.1: Feature importance for pooled random forest model. Length of
bar corresponds to importance.

Of the seven predictors entered into the model, shot distance was
easily the most predictive, to the point where all other predictors were
effectively dominated by the importance of shot distance in making
splits. This was consistent with the player-specific logistic regression
results. The next most important predictor was ‘differential’, giving
credence to our hypothesis that ‘pressure-based’ predictors have an
effect on player shot outcome. In the case of ‘differential,’ this
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indicates that a player’s team outscoring (or being outscored) by the
opposing might have an effect on their chance of making a field goal.
Interestingly, whereas the logistic regressions found scoring differential
to be a consistently insignificant predictor, the random forest actually
found it to be more significant than any of the streak predictors.

3.4 Player-specific Random Forest

Figure 3.4.1: Feature importance for Harrison Barnes. Length of bar corre-
sponds to importance.

As a whole, player-specific models tended to perform in-line with
expectations of accuracy, with test performance generally straying by
no more than a few percentage points in either direction when
compared to the performance of the pooled random forest. F1 scores
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were extremely variable, ranging from as low as 30 to as high as 80

(see Table A.1.2).
Models for players who attempted more shots in the paint (e.g.,

centers or certain power forwards), also tended to be more accurate —
the models for Giannis Antetokounmpo and Rudy Gobert both scored
over 70% accuracy on the test dataset (which handily beats the
benchmark performance we set in the introduction to the results
section. With regard to the hot hand effect, similarly to the pooled
random forest, most models indicated that the streakiness indicators
were not important predictors relative to the others (see Figure 3.4.1
for a specific example).

Overall, we again see shot distance identified as a substantially
more important predictor, followed by point differential (which varies
substantially in importance by model), and finally the make streak
indicators as well as the indicator for whether the respective player’s
team is home or away. As seen in Table 3.4.1, when we standardize
importance to shot distance (which was the most important predictor
for all players), streak indicators are at most 5% of the importance of
shot distance, whereas differential is as much as 54% of the
importance of shot distance. This is a stark difference from the results
of the player-specific logistic regressions, which rarely identify
differential as a significant predictor.
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Player S_1 S_2 S_3 S_4 Home Diff
J. Harden - HOU 0.02 0.01 0.01 0.01 0.03 0.20
G. Antetokounmpo - MIL 0.01 0.01 0.00 0.01 0.01 0.08
D. Lillard - POR 0.02 0.02 0.01 0.01 0.03 0.28
B. Beal - WAS 0.02 0.02 0.01 0.02 0.03 0.23
R. Westbrook - OKC 0.02 0.02 0.01 0.01 0.03 0.21
C. McCollum - POR 0.05 0.04 0.03 0.03 0.06 0.51
D. Booker - PHO 0.02 0.02 0.02 0.02 0.03 0.32
L. Aldridge - SAS 0.02 0.01 0.01 0.01 0.03 0.21
K. Durant - GSW 0.01 0.03 0.01 0.01 0.03 0.20
A. Wiggins - MIN 0.03 0.01 0.02 0.01 0.02 0.18
K. Towns - MIN 0.01 0.02 0.01 0.01 0.02 0.21
S. Curry - GSW 0.02 0.04 0.06 0.02 0.05 0.32
A. Davis - NOP 0.02 0.01 0.01 0.01 0.03 0.15
K. Walker - CHO 0.03 0.03 0.03 0.03 0.04 0.36
D. Mitchell - UTA 0.02 0.03 0.02 0.01 0.06 0.30
J. Embiid - PHI 0.01 0.01 0.02 0.01 0.03 0.20
K. Thompson - GSW 0.02 0.02 0.03 0.02 0.05 0.38
L. James - CLE 0.01 0.01 0.01 0.01 0.02 0.13
J. Holiday - NOP 0.01 0.01 0.01 0.01 0.03 0.21
K. Lowry - TOR 0.02 0.02 0.02 0.02 0.04 0.30
K. Middleton - MIL 0.05 0.04 0.03 0.03 0.07 0.54
A. Drummond - DET 0.02 0.01 0.01 0.01 0.03 0.21
L. Williams - LAC 0.03 0.04 0.04 0.03 0.07 0.47
J. Murray - DEN 0.03 0.03 0.02 0.02 0.06 0.34
D. DeRozan - TOR 0.02 0.02 0.02 0.02 0.04 0.32
E. Gordon - HOU 0.03 0.03 0.02 0.01 0.04 0.33
E. Fournier - ORL 0.02 0.02 0.02 0.01 0.04 0.37
A. Gordon - ORL 0.01 0.01 0.01 0.01 0.02 0.20
S. Dinwiddie - BRK 0.03 0.02 0.01 0.02 0.04 0.26
R. Gobert - UTA 0.02 0.01 0.01 0.02 0.05 0.22

Table 3.4.1: Player-specific random forest feature importances. All values
are standardized to the feature importance of shot distance (and shot distance
was subsequently dropped from this table).
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4
Discussion

4.1 Conclusions and Implications

This study yielded a number of insights into the potential existence of
a hot-hand effect in basketball. Previous studies that found evidence
for the ‘hot hand’ have predominantly relied on developing test
statistics based off conditional probabilities of made or missed field
goals. While other studies have also utilized regression techniques, our
methodology and data representation provide a unique approach to
investigating the existence of streakiness in shooting. Indeed, unlike
other studies, rather than investigating the existence of the hot hand
independently, we examine the degree to which streakiness may play a
role in predicting shot outcomes and identify player-specific
differences in hot-handedness.
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Our pooled logistic regression indicated that, across the top 40
players in the league, being on a streak not only was a significant
predictor of field goal outcome, but also increased the log odds of the
player making this shot — an indication that a ‘hot hand’ may indeed
exist. Player-specific logistic regressions gave insight into the
existence of this effect at an individual level. As expected, the
significance and direction of ‘hot handedness’ as a predictor varied
considerably depending on the player — for certain players, the effect
was significantly more pronounced, whereas for others, it was
completely insignificant. Interestingly, players with shot profiles in the
paint tended to have a profile more consistent with streaky shooting.
Given that shots in the paint are generally more likely to go in than
those from beyond the arc, this trend appears to seem reasonable.

The random forest classifiers provide an entirely different
perspective than the logistic regressions. The pooled random forest
provided no indication that streakiness was important to predicting
shot outcomes relative to shot distance and differential. Upon
plotting the feature importances (and the permutation importances),
we found that the models determined our streak indicators to be
relatively unimportant to the model.

One particularly interesting case was that of Rudy Gobert, whose
model (among many other centers and power forwards) found all four
make streak predictors to be extremely significant in his logistic
regression (p ≤ 0.001, see figure 4.1.1). As with other players,
however, the random forest model found the streak predictors to be
extremely unimportant (see 4.1.1. More interestingly, the random
forest for Gobert’s shooting data found differential to be a relatively
important predictor, even when the logistic regression on his shooting
data found differential to be insignificant p ≈ .5. Much like the
ongoing research on this topic, we are left with an ambiguous result,
wherein one model indicates a streakiness effect, and another
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indicates that streakiness is unimportant.

coef std err z P> |z| [0.025 0.975]
ShotDist -0.2148 0.022 -9.675 0.000 -0.258 -0.171
StreakMake_1 0.8256 0.108 7.639 0.000 0.614 1.037
StreakMake_2 0.7669 0.129 5.949 0.000 0.514 1.020
StreakMake_3 0.5524 0.161 3.431 0.001 0.237 0.868
StreakMake_4 0.9822 0.223 4.399 0.000 0.545 1.420
IsHome 0.8336 0.088 9.489 0.000 0.661 1.006
Differential 0.0032 0.005 0.665 0.506 -0.006 0.013

Table 4.1.1: Logistic regression on Rudy Gobert’s shooting data

A possible explanation for the discrepancies between the random
forest model results and that of the logistic regressions lies with the
importance of ShotDist. Given that shot distance so regularly
influences the degree of difficulty of the shot, it is possible that it
‘explains away’ any effects from being on a ‘hot streak,’ at least in the
random forest models. Similarly to Boc et. al., we attempted to
investigate the interaction between make streaks and shot distance in
the context of predicting shot outcomes but found that this
substantially reduced model interpretability (and potentially as a
result of our relatively small datasets for individual players).

4.2 Comparison to Previous Works

As with other studies, the nature of the ‘hot hand effect’ is once again
ambiguous here. Although our logistic regressions would seem to
indicate the existence of such an effect (at least in certain individuals’
playing styles), the random forest indicates the opposite. That being
said, our methods bring a valuable new approach and perspective to
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Figure 4.1.1: Feature importance for Rudy Gobert. Length of bar corre-
sponds to higher importance.
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this problem.
As we mentioned earlier in this paper, some of the most significant

studies on hot-handedness have utilized a difference in conditional
probabilities (on both make and miss streaks), in order to determine
the existence of a streakiness effect in shooting [7, 13]. As we show in
Chapter 2, however, this approach has significant limitations.
Recalling our original example of the limitations of this method, we
ran the bootstrapping and test statistic on the following shooting
night:

011111111111111111111011111111111111111111101111111111.

This should be an unquestionably ‘hot shooting night,’ yet Miller
and Sanjurjo’s test statistic actually identifies streakiness as
insignificant in this series of shots, with a p value of .4709 (see Figure
2.3.2, calling into question the way researchers are setting up this
problem and the manner in which current research defines streakiness
in shooting in general.

Perhaps one issue with the approach of existing literature
(including other studies that have more similar methods to the one we
utilize here, such as Bocskocsky et. al. [3]), is the absence of
player-specific effects. Indeed, while Miller and Sanjurjo do
investigate their test statistic at an individual player level, they do
not include any information about that player’s abilities, and instead
run the same test statistic on each player’s data. In this paper, we
assume that streakiness is unique to each individual player —— and
that a ‘hot hand’ effect should be relative to each individual player’s
ability to make a shot. Thus, standards for streakiness should be
different from player to player (hence our use of player-specific logistic
regression). For example, a regular shooting night for a player like
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Stephen Curry might be considered an extremely ‘hot’ shooting night
for another player.

4.3 Recommendations for Future Work

Our work in this paper clearly indicates the need for future research.
For one, we elected to represent ‘hot streaks’ as indicators of having
made the kth previous shot in a streak, whereas previous papers have
utilized a measure of heat based on the proportion of previously made
field goals [3]. Future projects should consider different methods of
representing streakiness and their respective advantages and
disadvantages.

We also recognize the limits of sample size in our models,
particularly with regard to player-specific regression. Perhaps future
studies might consider employing a bootstrapping approach in order
to improve sample size, and avoid running into the issue presented by
the ‘Truth in the Law of Small Numbers’ as defined by Miller &
Sanjurjo [13].

We also sought to create the most interpretable model results
possible, rather than creating more complicated (but potentially more
accurate) models. One could certainly consider exploring this problem
with a more complicated model (such as a neural network, gradient
boosting, etc.).

Exploring hot-handedness in the context of shot difficulty was also
of interest to us, but unfortunately, our data set was limited.
Ultimately, we were only able to use shot distance, team point
differential, and whether the team was home or away, as proxies for
shot difficulty. It could prove fruitful to build models that include
more in-depth information on shot difficulty, similarly to Bocskocsksy
et. al. [3]. Optical player tracking data (such as the datasets
generated by SportsVU), could prove invaluable to future research.
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Such data could also be used to explore the existence of ‘heat checks,’
or the idea that players tend to take increasingly difficult shots after
making consecutive field goals.

4.4 Conclusion

Although this paper does not provide a definitive answer as to the
existence of a ‘hot hand’ effect, it does provide limited evidence
towards its existence. More importantly, our results demonstrate that
should a ‘hot hand’ exist, it will vary from player to player to the
extent that some players may experience extreme streakiness, and
others may not experience it at all. Our results also give credence to
the idea that, should future researchers endeavor to build a model for
shot outcomes, they can consider using streakiness as a way to further
tailor such a model to individual players. Such insight would also be
of great interest to NBA franchises and their increasing reliance on
data-driven methods for player evaluation, by allowing coaches to
make more informed decisions about prioritizing players at certain
points during games.
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A
Appendix

A.1 Description of Figures

1. Accuracy and F1 score for player-specific logistic regression:
A.1.1

2. Accuracy and F1 score for player-specific random forest
classification: A.1.2
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Player Train Test Train F1 Test F1
J. Harden - HOU 0.606486 0.600837 0.522014 0.534959
G. Antetokounmpo - MIL 0.657099 0.645075 0.715098 0.704142
D. Lillard - POR 0.586305 0.583607 0.480020 0.466387
B. Beal - WAS 0.601593 0.600165 0.523798 0.538535
R. Westbrook - OKC 0.622621 0.636121 0.526257 0.560687
C. McCollum - POR 0.557374 0.529958 0.426942 0.383167
D. Booker - PHO 0.588265 0.598990 0.486334 0.492976
L. Aldridge - SAS 0.590731 0.588004 0.586779 0.586377
K. Durant - GSW 0.593882 0.566596 0.620690 0.587525
A. Wiggins - MIN 0.626313 0.629667 0.550271 0.541823
K. Towns - MIN 0.598674 0.599787 0.655117 0.661858
S. Curry - GSW 0.581638 0.569231 0.488654 0.467005
A. Davis - NOP 0.624144 0.621714 0.653330 0.656995
K. Walker - CHO 0.583288 0.580715 0.382094 0.394366
D. Mitchell - UTA 0.596325 0.619306 0.458303 0.504937
J. Embiid - PHI 0.609552 0.634409 0.600068 0.631436
K. Thompson - GSW 0.559940 0.551896 0.419260 0.400534
L. James - CLE 0.644395 0.634518 0.686050 0.694915
J. Holiday - NOP 0.598621 0.605759 0.590487 0.607930
K. Lowry - TOR 0.595398 0.608974 0.451948 0.483926
K. Middleton - MIL 0.561162 0.553922 0.440982 0.401316
A. Drummond - DET 0.632323 0.609655 0.700533 0.683799
L. Williams - LAC 0.602881 0.590659 0.380086 0.322727
J. Murray - DEN 0.587417 0.592233 0.457870 0.452769
D. DeRozan - TOR 0.595409 0.593391 0.518360 0.499115
E. Gordon - HOU 0.623642 0.615187 0.461116 0.412574
E. Fournier - ORL 0.594265 0.592348 0.507008 0.516432
A. Gordon - ORL 0.636996 0.642061 0.580386 0.587480
S. Dinwiddie - BRK 0.637429 0.600000 0.531593 0.489627
R. Gobert - UTA 0.713860 0.711155 0.814791 0.812903
J. Tatum - BOS 0.594240 0.597668 0.516717 0.515789
P. George - OKC 0.602692 0.602465 0.428334 0.479839
K. Love - CLE 0.589774 0.584375 0.351635 0.348039
B. Hield - SAC 0.566711 0.582888 0.364170 0.417910
J. Brown - BOS 0.606095 0.569678 0.593234 0.544571

Table A.1.1: Accuracy and F1 score for player-specific logistic regression.
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Player Train Test Train F1 Test F1
J. Harden - HOU 0.634582 0.635729 0.447706 0.452830
G. Antetokounmpo - MIL 0.703025 0.718722 0.707926 0.724108
D. Lillard - POR 0.615447 0.614754 0.374544 0.352617
B. Beal - WAS 0.623647 0.608409 0.447045 0.460840
R. Westbrook - OKC 0.657592 0.645018 0.483817 0.508015
C. McCollum - POR 0.586952 0.560338 0.315607 0.241630
D. Booker - PHO 0.615966 0.616162 0.404994 0.389068
L. Aldridge - SAS 0.621628 0.614553 0.505607 0.492228
K. Durant - GSW 0.632120 0.578224 0.589585 0.522156
A. Wiggins - MIN 0.649825 0.655903 0.485294 0.484115
K. Towns - MIN 0.632626 0.625400 0.601897 0.602492
S. Curry - GSW 0.593082 0.584615 0.413490 0.392804
A. Davis - NOP 0.659817 0.643429 0.615484 0.609023
K. Walker - CHO 0.618868 0.583965 0.345370 0.316726
D. Mitchell - UTA 0.632262 0.623644 0.381645 0.392294
J. Embiid - PHI 0.656313 0.655914 0.550066 0.549296
K. Thompson - GSW 0.598163 0.562874 0.364849 0.284314
L. James - CLE 0.685877 0.676396 0.666891 0.676806
J. Holiday - NOP 0.630897 0.638981 0.513100 0.542135
K. Lowry - TOR 0.635027 0.624359 0.401468 0.390852
K. Middleton - MIL 0.607339 0.566176 0.400000 0.319231
A. Drummond - DET 0.665403 0.671724 0.699288 0.697201
L. Williams - LAC 0.628944 0.603022 0.390766 0.341686
J. Murray - DEN 0.628252 0.597087 0.380232 0.299578
D. DeRozan - TOR 0.623745 0.616379 0.460113 0.402685
E. Gordon - HOU 0.649840 0.643501 0.423764 0.369021
E. Fournier - ORL 0.620303 0.629288 0.414039 0.425358
A. Gordon - ORL 0.682197 0.664345 0.572897 0.546139
S. Dinwiddie - BRK 0.671382 0.613008 0.519219 0.454128
R. Gobert - UTA 0.731744 0.725100 0.822017 0.818421
J. Tatum - BOS 0.631425 0.609329 0.488101 0.429787
P. George - OKC 0.638846 0.622496 0.408318 0.426230
K. Love - CLE 0.619048 0.621875 0.351926 0.349462
B. Hield - SAC 0.612742 0.590909 0.336192 0.337662
J. Brown - BOS 0.650667 0.592649 0.561454 0.472222

Table A.1.2: Accuracy and F1 score for player-specific random forest classifi-
cation.
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