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Abstract

The first part of this thesis provides a survey of the game theory relevant to the analysis of multi-player

player games, including the existence of mixed-strategy Nash equilibria, and the connections between

Nash equilibria and evolutionary game theory through replicator dynamics. This exposition also reviews

the Q-learning algorithm introduced in Watkins (1989), including a proof of its convergence.

The second part of this thesis is a study of social dilemmas, which are games where the payoff to an

individual player for cooperative behavior is lower than for defecting behavior, but players are worse off if

all defect. Sustaining cooperative action in social dilemmas is challenging due to this tension between

unaligned individual short-term incentives and group long-term incentives. One solution is to introduce a

social planner whose interventions can resolve the dilemma. In this work we see the application of a social

planner to the collective risk dilemma (CRD).The CRD captures the setting in which individuals can

contribute (cooperate) towards some collective target. If the target is not reached, i.e. too many agents did

not contribute (defect), all agents suffer with some probability (the risk). Prior analysis of the CRD

showed that there exist cooperative strategies which are stable steady states in settings with high risk Santos

and Pacheco (2011). This work strengthens this result and shows that these cooperative strategies are also

evolutionary stable strategies. Furthermore, this work specifically addresses the setting of low perceived risk

in the population, which a social planner learns to mitigate through economic intervention in a new

intertemporal framing of the CRD.Through Q-learning, a budgeted social planner can learn to push

players from non-cooperative to cooperative equilibria and improve the level of cooperation.
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1
Introduction

In many situations, it pays for individuals to defect from cooperative behavior— yet if all defect, everyone
is worse off. Such scenarios are known as social dilemmas. Because immediate gains for the individual are
not aligned with long-term benefit for the group, it is a challenge to sustain cooperative action in these
situations.

Social dilemmas such as action on global climate change, where incentives to free-riding behavior can
lead to the tragedy of the commons, where individual use of a collective good – or alternatively the lack of
maintenance of a collective good – reduces the quality for all Ostrom (1990). Wemay already be familiar
with the Prisoner’s dilemma as either a colloquialism or, as we will use it, a standard example in game
theory. The story goes: two prisoners accused of some crime are interrogated separately and given the
choice to betray their partner (defect,D)) or stay silent (cooperate, C). If both players betray each other
(D,D), both serve 2 years in prison; if both stay silent (C,C), both serve 1 year on a lesser charge.
However, if one prisoner betrays while the other stays silent ((C,D) or (D,C), one goes free while the
other serves 3 years. There is higher reward for betrayal against a silent partner, so the purely
reward-maximizing prisoner will betray their partner. But since both prisoners adopt this strategy, the
result is that both prisoners serve more jail time than they would have if they both cooperated. This
example demonstrates one type of social dilemma dynamics that can be used to model real-world
dilemmas.

In this thesis, we use the collective risk dilemma (CRD) to model such real-world dilemmas. The CRD
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captures the setting in which individuals can contribute (cooperate) towards some collective target. If the
target is not reached, i.e. too many agents did not contribute (defect), all agents suffer with some
probability (the risk). Compared to previous work inMARL to address sequential social dilemmas
Hughes et al. (2018) and Huang (2020), using the CRD as our model offers the additional complexity
and richness of anN player game in which players contribute to a public good.

Furthermore, we explore strategic behavior in social dilemmas by introducing a social planner whose
interventions can attempt to resolve the dilemma.

1.0.1 Contribution

This thesis makes both expository and research contributions to the analysis of the CRD. In Chapter 2, I
give a clear exposition of fundamental game theory ideas and results, principally the existence of a
mixed-strategy Nash equilibrium, and I connect the Nash solution concept with that in replicator
dynamics and evolutionary stable strategies. This exposition sets the stage for the novel analysis of
stability of CRD equilibria presented in Chapter 4. In Chapter 3, I provide a thorough explanation of the
Q-learning algorithm and the proof of its convergence, which is both mathematically intriguing and
important to understand before using the algorithm in Chapter 6. In Chapter 4, I begin with a survey of
the current state of research on the CRD before I provide a new analysis of the MSNE, including the ESS
solutions, of the CRD. In Chapter 5, I present a novel model with a social planner to approach improving
levels of cooperation the CRD. In Chapter 6, I present our results from implementing this model with
both a budgeted (action-constrained) and unbudgeted planner. In Chapter 7, I conclude and discuss
future work, in particular extensions using multi-agent reinforcement learning.
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2
Learning in games

This exposition aims to serve both as an extended background section and as a cohesive bridging of key
mathematical concepts and results needed for studying the collective risk dilemma. This exposition draws
from the textbooks Fudenberg (1991), Fudenberg (1998), and the Harvard course CS136 through Parkes
and Seuken (2022). First, we review key game theory concepts and the classic result of mixed-strategy
equilibrium existence. Then, we cover howNash equilibria connect to equilibria concepts in replicator
dynamics.

2.1 Game theory andNash equilibria

Game theory offers a framework to analyze the world as strategic interaction among economic, or
utility-maximizing agents. A game is defined by its players (or agents), the actions available to those
players, and the players’ utility functions over possible outcomes.

Definition 1 (Simultaneous move game). A finite, normal-form, simultaneous move game is defined by:

• A finite set of N players i ∈ [N] = {1, 2, . . . ,N}

• A finite action space A = A1 × A2 × · · · × AN where action ai ∈ Ai is the action played by agent i.
Together, a = (a1, . . . , an) ∈ A is an action profile.
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• Utility functions ui : A→ R for each agent i, which assigns a payoff for each action profile a ∈ A (which
determines the game’s outcome)

We adopt the perspective that each player aims to maximize their expected utility.
For two player games, it is convenient to represent these payoffs in a normal-form/matrix representation

which gives the payoffs to each agent for each possible action profile; see 2.1.1.

C D
C -1,-1 -3,0
D 0,-3 -2,-2

Figure 2.1.1: The canonical payoffs for a Prisoner’s Dilemma game (discussed in 1).

Players employ strategieswhich specify a distribution over their choice of actions. More precisely,

Definition 2 (Mixed-strategy). Amixed strategy si is a mapping from actions to a distribution
si : Ai → [0, 1], si ∈ Δ(Ai), for agent i where,

∑
j∈Ai

si(j) = 1 and Δ(Ai) is a probability simplex on Ai. Denote
the space of mixed strategies for player i as Σi.

A sample strategy in the Prisoner’s Dilemma would be to playC 60% of the time andD the other40% of
the time, which we would write as s1 = (.6, .4) for player 1. When there is some action a ∈ Ai such that
si(a) = 1 (and thus si(b) = 0 for all b ∈ A \ {a}), we call this a pure-strategy playing action a. Call the
N-tuple of strategies for all agents i (assumed to be sampled independently) a strategy profile,
s = (s1, . . . , sN) ∈ Σ where Σ = ×i∈[N]Σi. Let s−i denote the strategy profile without agent i, or
s−i = (s1, . . . si−1, si+1, . . . sN).

When we introduce probabilities over actions, we need a notion of expected utility.

Definition 3 (Expected utility). Let p(a) give the probability of action profile a and let the strategy profile be
s. Then the expected utility to player i is

ui(s) =
∑
a∈A

ui(a) · p(a)

Game theory is interested in players’ behavior when players’ strategies rely on the chosen strategies of
other players. We analyze such situations with the idea ofNash equilibria and players acting in best
response to the actions of others.

Definition 4 (Nash equilibrium). Amixed-strategy profile s∗ is a mixed-strategy Nash equilibrium (MSNE)
if for all players i,

ui(s∗, s∗−i) ≥ ui(si, s∗−i)
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for all mixed strategies si.
If s∗ is a pure-strategy and satisfies the conditions, we call this a pure strategy Nash equilibrium.

The pure strategy Nash equilibria in the Prisoner’s dilemma is (D,D), since for either player switching
to cooperate from the (D,D) equilibria only decreases that players’ payoff from−2 to−3 since we hold
the opponent player’s equilibrium strategy constant.

While pure-strategy Nash equilibria are not guaranteed to exist, MSNE are.

2.1.1 A fundamental result: the existence of mixed Nash equilibria

The guaranteed existence of a mixed strategy Nash equilibriummakes Nash equilibrium analysis
applicable to any game in which randomized play is possible. We use Kakutani’s fixed point theorem to
show this.

Theorem 5 (Kakutani’s fixed point theorem). The following conditions are sufficient for r : Σ→ P(Σ) to
have a fixed point (i.e., a σ ∈ Σ such that σ ∈ r(σ)): 1. Σ is a compact, convex, nonempty subset of a
finite-dimension Euclidean space, 2. r(σ) is nonempty for all σ, 3. r(σ) is convex for all σ, and 4. r(·) has a closed
graph, i.e. if the sequence (σn, σ̂n)→ (σ, σ̂) with σ̂n ∈ r(σn), then σ̂ ∈ r(σ).

Theorem 6 (Nash (1950)). For every finite, normal-form game there exists a mixed-strategy equilibrium.

Proof. Define player i’s reaction correspondence

ri : Σ→ P(Σi), σ 7→ {s ∈ Σi maximizing ui(s, σ−i)}

That is, ri maps each strategy profile to the set of mixed strategies which maximize expected payoff to
player i given σ−i. Consider the Cartesian product of all ri:

r : Σ→ P(Σ), σ 7→ ×i∈[N]ri(σ)

We see that a fixed point of rwould correspond to a Nash equilibrium; σ ∈ r(σ) such that σ i ∈ ri(σ).
We show that indeed r has a fixed point by satisfying the four conditions from Kakutani’s fixed point

theorem:

1. Σ is a compact, convex, nonempty subset of a finite dimensional Euclidean space. This follows
from each Σi simply being a simplex of dimension |Ai| − 1.

2. r(σ) is nonempty for all σ since each ui is assumed to be linear, and thus continuous; continuous
functions over compact sets achieve extrema, so r(σ) is non empty.
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3. r(σ) is convex for all σ.

Suppose for contradiction that r(σ)were not convex. Then there would exist σ ′ ∈ r(σ) and
σ ′′ ∈ r(σ) and λ ∈ (0, 1) such that, by the definition of convexity,

λσ ′ + (1− λ)σ ′′ /∈ r(σ).

However, by linearity of the utility function,

ui (λσ ′i + (1− λ)σ ′′i , σ−i) = λui(σ ′i, σ−i) + (1− λ)ui(σ ′′i , σ−i)

which implies that if both σ ′ and σ ′′ were best responses, their weighted average would also be a
best response, which is a contradiction to non-convexity.

4. r(·) has a closed graph.

Suppose this were not the case and there were some σ̂ /∈ r(σ) such that for σ̂n ∈ r(σn),
(σn, σ̂n)→ (σ, σ̂). In particular this implies there is some σ̂ i /∈ ri(σ) for some player i and thus
there exists an ε > 0 and a σ ′i such that ui(σ ′i, σ−i) > ui(σ̂ i, σ−i) + 3ε. However, ui is continuous
and (σn, σ̂n)→ (σ, σ̂) for sufficiently large n so

ui(σ ′i, σ
n
−i) > ui(σ ′i, σ−i)− ε > ui(σ̂ i, σ−i) + 2ε > ui(σ̂ni , σ

n
−i) + ε

which implies σ ′i is strictly better than σ̂
n
i against σn−i, which contradicts σni ∈ ri(σn).

2.2 Replicator dynamics and evolutionary stable strategies

Now that we have modeled strategic behavior with Nash equilibria, we introduce a model based on
evolution. We review two key concepts in evolutionary game theory: replicator dynamics and
evolutionary stable strategies (ESS). Replicator dynamics are a time-varying model that capture the
emulation/imitation of strategies by other agents. ESS is a static property (like Nash equilibria) that
captures the notion of resistance to an invading population of strategies.

2.2.1 Replicator Dynamics

For the discussion here, we make a few assumptions about the stage game and the players in the
population: 1) that we have a symmetric stage game, 2) that there is a single homogenous population, and
3) that only pure strategies are allowed. However, we can interpret the fractions of players in a population
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playing a pure strategies as equivalent to the corresponding symmetric mixed strategy over those pure
strategies.

Evolutionary dynamics uses similar but different notation than standard game theory, which we outline
here. Note that utility u(s, s′) is now the utility of the player playing strategy s, the first argument, against
another strategy s′, the second argument.

• u(s, s′): payoff to the player using pure strategy s against pure strategy s′

• u(s, σ) :=
∑

s′ σ(s
′)u(s, s′): payoff to the player using pure strategy s against strategy profile σ;

continuous in second variable on space of strategy profiles

• u(σ, σ ′) :=
∑

s σ(s)u(s, σ
′): average payoff of players in strategy profile σ against strategy profile

σ ′; continuous in both variables on space of strategy profiles

• φt(s): measure of set of players using pure strategy s at time t

• θt(s) :=
φt(s)∑
s′ φt(s′)

: fraction of players using pure strategy s at time t

• ut(s) :=
∑

s′ θt(s
′)u(s, s′): expected payoff to player using pure strategy s at time t (equivalent to

u(s, θt))

• ut :=
∑

s θt(s)ut(s) (equivalent to u(θt, θt))

The intuition for replicator dynamics is that a player with strategy s is matched with a player of strategy
s′, with s′ chosen proportionally to the measure of players in the population with that strategy.

We assume that each player’s strategy is fixed, that this strategy is inherited, and that the rate of growth
of the population using a strategy is proportional to its expected payoff at time t.

We can now define the dynamical system characterized by

φ̇t(s) = φt(s)ut(s)

Wewant to work with just θt, so we derive what is called the replicator equation.

Lemma 7 (The replicator equation). For the dynamical system characterized by φt as above

θ̇t(s) = θt(s)(ut(s)− ut(s))
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Proof.

θ̇t(s) =
d
dt

φt(s)∑
s′ φt(s′)

=
φ̇t(s)

∑
s′ φt(s

′)(∑
s′ φt(s′)

)2 − φt(s)
∑

s′ φ̇t(s
′)(∑

s′ φt(s′)
)2

=
φ̇t(s)∑
s′ φt(s′)

−
(

φt(s)∑
s′ φt(s′)

)(∑
s′ φ̇t(s

′)∑
s′ φt(s′)

)
=

φt(s)ut(s)∑
s′ φt(s′)

−
(

φt(s)∑
s′ φt(s′)

)(∑
s′ φt(s)ut(s

′)∑
s′ φt(s′)

)
=

(
φt(s)∑
s′ φt(s′)

)
ut(s)−

(
φt(s)∑
s′ φt(s′)

)∑
s′

(
φt(s)∑
s′ φt(s′)

)
ut(s′)

= θt(s)ut(s)− θt(s)ut(s)

= θt(s)(ut(s)− ut(s))

We first observe that the measure of set of players using strategy swill increase if expected payoff is
positive and decrease if expected payoff is negative. We also observe that the population share of strategy s
will increase if its payoff is above average and will decrease if its payoff is below average.

The next definition is a key concept in the study of dynamical systems.

Definition 8 (Steady state). A steady state is θ̂ such that if θt = θ̂ then θ̇t(s) = 0 for all s (i.e., population
shares of strategies are constant).

Every Nash equilibrium is a steady state: in Nash equilibrium all players use the same strategy (by
symmetry between players), so ut(s) = ut(s), meaning θ̇t(s) = 0. However, not every steady state is a
Nash equilibrium: steadiness holds whenever all players have the same strategy, regardless of optimality
(no entry of new strategies in this equilibrium).

When studying a steady state of a dynamical system, we are also interested in how the system behaves
around that state.

Definition 9. A stable steady state is a steady state θ̂ such that for every neighborhood U 3 θ̂ there is a
neighborhood U1 ⊂ U such that if θ0 ∈ U1 then θt ∈ U for t > 0 (i.e., if θ starts close enough to θ̂, it remains
close by).

The following result relates the local notion of stable steadiness to the global notion of Nash
equilibrium.

Theorem 10. If a steady state is stable, then it is a Nash equilibrium.
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Proof. Suppose θ̂ is a steady state, but the corresponding strategy profile σ∗ is not a Nash equilibrium.
Then there exists some pure strategies s ∈ supp(σ∗) and s′ with u(s′, σ∗) > u(s, σ∗). So there is some
ε > 0 such that u(s′, σ∗) > u(s, σ∗) + 3ε.
By continuity of u in the second variable, there is some neighborhoodU of σ∗ such that
|u(s, s∗)− u(s, σ∗)| < ε and |u(s′, s∗)− u(s′, σ∗)| < ε for all s∗ ∈ U.

Thus, we have u(s′, s∗) > u(s, s∗) + ε for all s∗ ∈ U. Thus,

θt ∈ U =⇒ ut(s′)− ut > ut(s)− ut + ε

=⇒ θ̇t(s′)
θt(s′)

>
θ̇t(s)
θt(s)

+ ε

=⇒ d
dt

ln(θt(s′)) >
d
dt

ln(θt(s)) + ε

=⇒ d
dt

ln
θt(s′)
θt(s)

> ε

If θ̂ were stable, then θt ∈ U for t > 0. Then limt→∞
θt(s′)
θt(s)

=∞ so limt→∞ θt(s) = 0. Note thatU could
be chosen such that s∗(s) > ε′ > 0 for all s∗ ∈ U, so θt /∈ U for some t > 0. This is a contradiction, so θ̂
cannot be stable.

This argument relied only on the fact that growth rates of strategies are increasing functions of payoff;
no additional structure of replicator dynamics was necessary.

To explore the converse, we will employ the slightly different notion of asymptotic stability.

Definition 11 (Asymptotically stable steady states). A steady state θ̂ is asymptotically stable if for every
neighborhood U 3 θ̂ there is a neighborhood U1 ⊂ U such that if θ0 ∈ U1 then limt→∞ θt = θ̂ (i.e., if θ starts
close enough to θ̂, it will converge to it).

It turns out that asymptotic stability refines the notion of Nash equilibrium. We introduce somemore
concepts to explain how.

• A steady state θ̂ is (locally) isolated if there exists a neighborhoodU 3 θ̂ containing no other steady
states.

• A perturbed game is one in which only totally mixed strategies are allowed (each strategy is played
with positive probability).

• A strategy s in a gameG is trembling hand perfect if there is a sequence of perturbed games
converging toG for which there is a sequence of Nash equilibria converging to s (intuitively,
equilibrium still roughly holds even if players diverge slightly with small enough probability).

9



Theorem 12. If a stable steady state is asymptotically stable, then it corresponds to a Nash equilibrium that is
trembling-hand perfect and isolated.

See Bomze (1986) for the proof.
This theorem has a number of consequences for us. In games that do not yield Nash equilibria that are

trembling-hand perfect and isolated, asymptotic stability will not hold under ourmodel, so such equilibria
will be hard to find. The next section will address a stronger notion of stability than asymptotic stability,

2.2.2 Evolutionary stable strategies

Informally, we are interested in an equilibrium that can repel invading evolutionary strategies. Although it
is formally a static property, we may intuit it dynamically as an equilibrium where invaders die off
immediately.

Definition 13 (Evolutionary stable strategy (ESS)). If a population is at some profile σ and a small ε play σ ′,
σ is an ESS if the resulting mixture has lower payoff than the existing population under σ, or

u(σ, (1− ε)σ + εσ ′) > u(σ ′(1− ε)σ + εσ ′)

for all sufficiently small ε.

Lemma 14. A profile σ corresponds to an ESS if and only if one of the following holds

• u(σ, σ) > u(σ, σ)

• u(σ, σ) = u(σ, σ) and u(σ, σ) > u(σ, σ)

Proof. This follows directly from expanding the expressions in Definition 14 by linearity of
expectations.

We are interested in relating this new notion to the previous equilibrium refinements, in particular
asymptotically stable strategies. First, we introduce local Lyapunov functions for equilibria. Then we
show if there exists a local Lyapunov function for equilibrium σ, then σ is an asymptotically stable
equilibrium. Then we can prove that if σ is an ESS, then it is an ASSS by exhibiting such a function.

Definition 15 (local Lyapunov). A local Lyapunov function V for an equilibrium σ is a real-valued C1

function on a neighborhood U 3 σ satisfying

• V ≥ 0 and V(θ) = 0 ⇐⇒ θ = σ

• d
dtV(θt) < 0 for θt 6= σ and d

dtV(θt) = 0 for θt = σ

Lemma 16. If there exists a local Lyapunov function for equilibrium σ, then σ is a stable equilibrium.

10



Proof. Choose ε > 0 such that Bε(σ) ⊂ U. Then V attains a minimumm on the (compact) boundary
∂Bε(σ), andm > 0 since V > 0 onU \ {σ}. Since V is continuous, we can pick δ > 0 such that
V(θ) < m for θ ∈ Bδ(σ).

We will show that θ0 ∈ Bδ(σ) =⇒ θt ∈ Bε(σ) for all t. Assume for the sake of contradiction that this
fails. Then by continuity there is some T > 0 such that θT ∈ ∂Bε(σ) (i.e., the trajectory must cross the
boundary as it exits the ball), so V(θT) ≥ m. However, d

dtV(θt) < 0 for all t < T, so V(θT) < V(θ0) < m,
which is a contradiction.

Theorem 17. If there exists a local Lyapunov function for equilibrium σ, then σ is an asymptotically stable
equilibrium.

Proof. By Lemma 16, σ is stable. Thus, there is some r such that θ0 ∈ Br(σ) =⇒ θt ∈ θ0 ∈ BR(σ) ⊂ U
for all t ≥ 0. And to show θt ∈ Bε(σ) for all t ≥ T, it suffices to show θT ∈ Bδ(σ) for some δ.

Assume for the sake of contradiction that θt ∈ BR(σ) \ Bδ for all t ≥ 0. By continuity and
compactness, d

dtV(θt) attains a maximum−μ, and−μ < 0 since d
dyV(θt) < 0 onU. Then we have

V(θT) = V(θ0) +
∫ T

0

d
dt
V(θt)dt

≤ V(θ0) +
∫ T

0
−μdt

= V(θ0)− Tμ

ForT > V(θ0)
μ this impliesV(θT) < 0, which is a contradiction. Thus, for all t large enough, θt is contained

inside all Bε(σ), so limt→∞ θt = 0.

Theorem 18. If σ is an ESS, then it is an ASS.

Proof. We construct a local Lyapunov function as follows.

Eσ(θ) := 1−
∏
s

(
θ(s)
σ(s)

)σ(s)

To see that Eσ has a unique global minimum at σ, note that, with the inequality resulting from Jensen’s
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inequality and the concavity of log,

log(1− Eσ(θ)) = log

(∏
s

(
θ(s)
σ(s)

)σ(s)
)

=
∑
s

σ(s) log
(
θ(s)
σ(s)

)

≤ log

(∑
s

σ(s)
θ(s)
σ(s)

)

= log

(∑
s

θ(s)

)
= 0

Thus, Eσ(θ) ≥ 0. And the equality case of Jensen’s inequality holds if and only if θ(s)
σ(s) is the same for all s,

and by normalization that implies θ = σ.
To see that Eσ decreases with time near σ, we compute

d
dt(Eσ(θt))
1− Eσ(θt)

=
− d

dt(1− Eσ(θt))
1− Eσ(θt)

= − d
dt

log (1− Eσ(θt))

= − d
dt

∑
s

σ(s) log θt(s)

= −
∑
s

σ(s)
θ̇t(s)
θt(s)

= −
∑
s

σ(s)[ut(s)− ut]

= −
∑
s

σ(s)[u(s, θ)− u(θ, θ)]

= u(θ, θ)− u(σ, θ)

By Lemma 14 and continuity of u, we have u(θ, θ) < u(σ, θ) for θ in some neighborhoodU 3 σ.
Combined with the fact 1− Eσ(θt) > 0, we have d

dtEσ(θt) < 0 onU.

In summary, we have established the following broad relationships between notions of equilibria and
stability which will be important for my analysis of the CRD in Chapter 4.
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ESS ⊆ Asymp. SSS ⊆ SSS ⊆ NE ⊆ SS
↑ ↑

Thm. 18 Thm. 10

Figure 2.2.1: An overview of the relations between the types of equilibria that we have established:
in addition to the normal abbreviations SS stands for steady state and SSS stands for stable steady
state and.
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3
Q-learning

3.1 Q-learning

In this section, we 1) explain the Q-learning algorithm and 2) prove its convergence to an optimal
solution.

We first define aMarkov decision process (MDP) which is central to theQ-learning model and
algorithm. TheMDP gives us a framework for modeling an agent’s decision making in an environment in
which both randomness in the environment and decisions (actions) change outcomes. The notation used
in the definition below is used throughout this chapter.

Definition 19 (Markov decision process (MDP)). AMarkov decision proces (MDP) is defined by X, a finite
set of states; A, a finite set of actions, Pa(x, y), the transition probability for action a from state x to y for x, y ∈ S,
and the reward function r(x, a, y) which gives the specific reward from action a causing the transition from state
x to y. Assume r is bounded and deterministic.

A classic figure, taken from Sutton (2018) so forgive the slight capitalization difference in notation,
helps us visualize the process.

14



Figure 3.1.1: The agent-environment interaction in an MDP

3.1.1 Q-learning algorithm

This exposition draws from the treatment of Q-learning in the textbook Sutton (2018).
Q-learning is an off-policy, temporal difference control algorithm. The algorithm learns a functionQ

which approximates the optimal action-value function independent of the policy that is followed (beyond
the fact that the policy dictates which state-action pairs are visited). The only assumptions needed for
convergence are that all state-action pairs are visited infinitely many times and some typical stochastic
approximation conditions on the learning rate; we discuss these conditions in depth in the next section
3.1.2.

Q-learning applies an update rule to approach a determination of an optimal value function. At its
heart the algorithm is a alternate expression of the Bellman equation, which includes both immediate
reward and discounted future values.

Qt+1(xt, at) = Qt(xt, at) + αt(xt, at)[rt + γmax
b∈A

Qt(xt+1, b)− Qt(xt, at)]

To illustrate how this update rule is applied to theMDP, we provide this procedural outline:

Algorithm 1Q-learning algorithm

Algorithm parameters: step size a ∈ [0, 1), small ε > 0 repeat
for each episode do

Initialize S for each step of episode do
Choose A from S using policy derived from Q (e.g., ε-greedy) Take action A, observe R, S′

Q(S,A)← Q(S,A) + α[R+ γmaxa Q(S′, a)− Q(S,A)] S← S′

end

end

until S is terminal/have reached maximum t;

Typical implementations of Q-learning employ an ε-greedy approach: with probability ε, the algorithm
explores a random action, otherwise it exploits the action with the maximumQ value for a given state.
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3.1.2 Convergence of Q-learning

The convergence of Q-learning was introduced byWatkins in 1989 and proved byWatkins and Dayan in
1992Wat. The result was generalized independently in 1993/1994 by Jaakkola et al. (1993) and Tsitsiklis
(1994) by using ideas from stochastic approximation theory rather than using a construction specific to
Q-learning as inWat. Though we only discuss Q-learning here, the proof of Jaakkola et al. (1993) applies
more generally. ¹ This exposition draws fromMelo (2021) and Jaakkola et al. (1993) and expands upon
their exposition.

The optimal Q-function

Q-learning makes continuous updates to learn the optimal Q-function. We first formalize some key
definitions to understand the optimal Q-function.

The value of a state x is the expected discounted reward from a sequence of actions starting from x:

Definition 20 (Value of a state). Let the value of a state x ∈ X for a sequence of actions {At} be represented
by J : X× AN → R,

J(x, {At}) = E

[
∞∑
t=0

γtR(Xt,At)|X0 = x

]
where Xt,At are random variables reflecting the state and action in time step t respectively, R is shorthand for
E[R(Xt,At)] =

∑
y∈X PAt(x, y) · r(Xt = x,At = a,Xt+1 = y) and the discount factor γ ∈ (0, 1).

We use this value of a state to define the optimal value function, which simply takes the maximum
expected value of a state over all possible sequences of actions leaving x.

Definition 21 (Optimal value function). V∗(x) is the optimal value function

V∗(x) = max
{At}

∞∑
t=0

E [γtR(Xt,At)|X0 = x]

Crucially, this formulation gives us the following identity, which we quickly derive:

Lemma 22.
V∗(x) = max

a∈A

∑
y∈X

Pa(x, y)[r(x, a, y) + γV∗(y)]

Proof. Consider J(x, {At}) for some starting state x and action sequence {At}. We expand on the first

¹Jaakkola et. al extend their proof for convergence ofQ-learning toTD(λ) learning, which unifiesMonteCarlomethods and
temporal difference learning.
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iteration, apply linearity of expectation, and re-index to express the value of in a convenient form:

E

[
∞∑
t=0

γtR(Xt,At)|X0 = x

]
=
∑
y∈X

PA0(x, y)

[
r(x,A0, y) + E

[
∞∑
t=1

γtR(Xt,At)|X1 = y

]]

=
∑
y∈X

PA0(x, y)

[
r(x,A0, y) + γE

[
∞∑
t=0

γtR(Xt,At+1)|X0 = y

]]
=
∑
y∈X

PA0(x, y) [r(x,A0, y) + γJ(y, {At}t≥1)]

Now, we plug this back into V∗(x), and by independence of A0,At≥1, and after some re-labeling:

V∗(x) = max
At

∑
y∈X

PA0(x, y) [r(x,A0, y) + γJ(y, {At}t≥1)]

= max
A0∈A,At≥1

∑
y∈X

PA0(x, y) [r(x,A0, y) + γJ(y, {At}t≥1)]

= max
A0∈A

∑
y∈X

PA0(x, y)
[
r(x,A0, y) +max

At≥1
γJ(y, {At}t≥1)

]
= max

a∈A

∑
y∈X

Pa(x, y) [r(x, a, y) + γV∗(y)]

We see the similarity of this value function with theQ-learning update function. We now have the
pieces to define the optimalQ∗ function; formally,

Definition 23 (Optimal Q-function). The optimal Q-function is

Q∗(x, a) =
∑
y∈X

Pa(x, y)[r(x, a, y) + γV∗(y)]

We now see that the optimal Q-functionQ∗ is a rephrasing of this identity so that
V∗(x) = maxa∈A Q∗(x, a), which makes the problem of determining the optimalQ-function equivalent
to the value optimization RL control problem. Themathematical convenience of using theQ function is
that the maximum appears inside the expectation in theQ update function.

Return to the proof of Q-learning convergence

To prove converge of Q-learning toQ∗, it will be helpful to show thatQ∗ is a fixed point of a function
which can be applied to the update rule. The recursive identity of V∗ leads us to consider the following
operator, call itH, over the space of possible Q functions {q|q : X× A→ R}:
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H(q(x, a)) =
∑
y∈X

Pa(x, y)[r(x, a, y) + γmax
b∈A

q(y, b)]

Lemma 24. H is a contraction in the sup-norm².

Proof. Wewant to show ‖H(q1)− H(q2)‖∞ ≤ γ‖q1 − q2‖∞. Quickly expanding,

‖H(q1)− H(q2)‖∞ = max
x,a∈X,A

∑
y∈X

Pa(x, y)[r(x, a, y) + γmax
b∈A

q1(y, b)− r(x, a, y)− γmax
b∈A

q2(y, b)]


= max

x,a∈X,A
γ

∑
y∈X

Pa(x, y)[max
b∈A

q1(y, b)−max
b∈A

q2(y, b)]


≤ max

x,a∈X,A
γ
∑
y∈X

Pa(x, y)max
z,b

[q1(z, b)− q2(z, b)]

= max
x,a

γ
∑
y∈X

Pa(x, y)‖q1 − q2‖∞

= γ‖q1 − q2‖∞

Theorem 25. Q∗ is a fixed point of H

Proof. SinceH is a contraction by 24, by the Banach fixed point theorem there will be a unique fixed
point. We demonstrate thatQ∗ is this fixed point:

H(Q∗)(x, a) =
∑
y∈X

Pa(x, y)[r(x, a, y) + γmax
b∈A

∑
z∈X

Pb(x, z)[r(x, b, z) + γV∗(z)]]

=
∑
y∈X

Pa(x, y)[r(x, a, y) + γV∗(y)]

= Q∗(x, a)

Finally before proving convergence, we present a result from stochastic approximation. The proof given
in Jaakkola et al. (1993) is quite technical and is not presented here.

Theorem 26. Jaakkola et al. (1993)The random process {Δt} taking values inRn and defined as

Δt+1(x) = (1− αt(x))Δt(x) + αt(x)Ft(x)

²Note that the choice of norm is for convenience but, by the equivalence of norms for finite dimensional vector spaces over
complete valued fields (e.g. the function space we consider), is not limiting.
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converges to zero with probability 1 under the following assumptions: let W be some weighted maximum norm,

• 0 ≤ αt ≤ 1,
∑

t αt(x) =∞ and
∑

t α
2
t (x) <∞

• ‖E[Ft(x)|Ft]‖W ≤ γ‖Δt‖W with γ < 1

• Var[Ft(x)|Ft] ≤ C(1+ ‖Δt‖2W)

We now have the pieces to prove the convergence of Q-learning.

Theorem 27 (Convergence of Q-learning). Given a finite MDP (X ,A, P, r), the Q-learning algorithm with
the update rule

Qt+1(xt, at) = Qt(xt, at) + αt(xt, at)[rt + γmax
b∈A

Qt(xt+1, b)− Qt(xt, at)]

and with learning rate properties for all (x, a) ∈ X ×A∑
t

αt(x, a) =∞,
∑
t

α2t (x, a) <∞

converges with probability 1 to the optimal Q-function.

Proof. To apply 3.1.2 we rewrite the Q-learning update rule as

Qt+1(xt, at) = (1− αt(xt, at))Qt(xt, at) + αt(xt, at)[rt + γmax
b∈A

Qt(xt+1, b)]

Let Δt(x, a) = Qt(x, a)− Q∗(x, a). Then

Δt(xt, at) = (1− αt(xt, at))Δt(xt, at)) + αt(x, a)[rt + γmax b ∈ AQt(xt+1, b)− Q∗(xt, at)]

and letting X(x, a) be a random sample state obtained from the relevant Markov chain (X , Pa), we can
write

Ft(x, a) = r(x, a,X(x, a)) + γmax
b∈A

Qt(y, b)− Q∗(x, a)

so we have

E[Ft(x, a)|Ft] =
∑
y∈X

Pa(x, y)[r(x, a,X(x, a)) + γmax
b∈A

Qt(y, b)− Q∗(x, a)]

which is conveniently equivalent to

E[Ft(x, a)|Ft] = (H(Qt))(x, a)− Q∗(x, a)
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and sinceQ∗ is a fixed point ofH

E[Ft(x, a)|Ft] = (H(Qt))(x, a)− (H(Q∗))(x, a)

now from the fact thatH is a contraction in the sup norm, it is immediate that

‖E[Ft(x, a)|Ft]‖∞ ≤ γ‖Qt − Q∗‖∞ = γ‖Δt‖∞

and finally we compute variance.

Var[Ft(x)|Ft] = E[(r(x, a,X(x, a)) + γmax
b∈A

Qt(y, b)− Q∗(x, a)− (H(Qt))(x, a) + Q∗(x, a))2]

= E[(r(x, a,X(x, a)) + γmax
b∈A

Qt(y, b)− (H(Qt))(x, a))2]

= Var[r(x, a,X(a, a)) + γmax
b∈A

Qt(y, b)|Ft]

and since r is bounded we can conclude that for some constant C

Var[Ft(x)|Ft] ≤ C(1+ ‖Δt‖2W)

so by Δt converges to zero with probability 1 soQt converges toQ∗ with probability 1.

Proving convergence has given us a closer look at the theoretical underpinnings of the Q-learning
algorithm and an understanding of the conditions needed for convergence. In practice we can satisfy
these conditions by: for

∑
t αt =∞, visiting each state-action pair infinitely often through an ε-greedy

policy, and for
∑

t α
2
t <∞, reducing the learning rate over time. In my implementation ofQ-learning in

Chapter 6, choices for these parameters are discussed.
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4
TheCollective RiskDilemma

The remainder of this thesis addresses the collective risk dilemma. This chapter gives a thorough exposition
of the collective risk dilemma (CRD), contextualizing the CRDwithin the larger body of work on social
dilemmas, unifying many distinct treatments of the CRD in the literature, and providing precise analysis
of its equilibria.

In the next two chapters (5, 6), I introduce an intertemporal extension of the CRD allowing for the
intervention of a social planner and present the results of using Q-learning for the planner.

4.1 Background: social dilemmas

Social dilemmas are well-studied in game theory and capture settings in which Nash equilibria
characterized by defective behavior result in outcomes below the Pareto optimal, which is the property of
an outcome where no player can be strictly better off without making at least one other individual strictly
worse off Ostrom andWalker (2003).

The following definition is adapted from the broader definition found in Hughes et al. (2018).

Definition 28 (2 action,N-player social dilemma). An N-player social dilemma is defined by a tuple (G, σ),
with G an N player game with 2 actions, cooperate, C, and defect, D, available to each player, and
σ = (C, . . .C︸ ︷︷ ︸

ℓ

,D, . . .D︸ ︷︷ ︸
m

) representing ℓ cooperators and m defectors, ℓ+ m = N. Given that there are ℓ
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cooperators, denote the expected payoff from C (D) as RC(ℓ) (RD(ℓ)). Then (G, σ) is a social dilemma if

• Mutual cooperation is preferred to mutual defection, RC(N) > RD(0)

• Mutual cooperation is preferred to being exploited with defectors, RC(N) > RC(0)

• Both or one of the fear or greed property is satisfied:

– Fear: mutual defection is preferred to cooperating with defectors, RD(i) > RC(i) for sufficiently
small i

– Greed: defecting against cooperators is preferred to mutual cooperation, RD(i) > RC(i) for
sufficiently large i

Revisiting the 2-player games Stag Hunt and Prisoner’s dilemma, we see from their payoff matrices that
they are social dilemmas. We later show in Lemma 30 that some collective risk dilemmas are social
dilemmas.

4.2 The collective risk dilemma

TheN-player game which we study is called the collective risk dilemma (CRD), introduced inMilinski et al.
(2008). The CRD is a modified threshold game, which simply refers to a multiplayer game defined by
someminimum number of cooperators (threshold) for all players to receive some benefit.

Definition 29. The collective risk dilemma (CRD) is an N-player simultaneous move game
CRD(N,M, c, r, b) specified by: N players, an integer threshold M < N, a fractional (percent) cost of
cooperation c ∈ (0, 1), a probability representing level of risk r ∈ (0, 1), and a starting endowment b
symmetric¹ for all players. Each player in the CRD has two actions available: either cooperate (C), paying a
fraction of their endowment c · b, or defect (D), paying nothing. If the total number of cooperators is below the
threshold, then with probability r a risky event occurs and players lose their remaining endowment.

Note that since there are only two actions, C,D, when we refer to a strategy we need only specify the
probability of cooperating, referred to in this section as x. We often consider the incentives for a single
agent in the CRD and as such are interested in the number of other cooperators, which we model as
k ∼ Bin(N− 1, x), representing the otherN− 1 players each adopting strategy x.

We see in Figure 4.2.1 that the expected payoffs depend non-linearly on the number of cooperators,
which especially distinguishes analysis of the CRD from the analysis of two-player games.

¹Other treatments of the CRD consider the effective of inequality in endowments, see
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k≥ M k=M-1 k<M-1
C b(1-c) b(1-c) b(1-c)(1-r)
D b b(1-r) b(1-r)

Figure 4.2.1: Expected payoffs in the CRD.

Now I show that some CRDs are social dilemmas.

Lemma 30. For c < r, M > 1, CRD(N,M, c, r, b) satisfies the definition of a N-player social dilemma.

Proof. We demonstrate each condition:

• WithN cooperators, cooperators have expected payoff b(1− c). With 0 cooperators, defectors have
expected payoff b(1− r). Since c < r, RC(N) = b(1− r) < b(1− c) = RD(N), so mutual
cooperation is preferred to mutual defection.

• WithN cooperators, cooperators have expected payoff b(1− c). With 0 cooperators, cooperators
have expected payoff b(1− c)(1− r). Since RC(N)b(1− c) > b(1− c)(1− r) = RC(0), mutual
cooperation is preferred to being exploited with defectors.

• Both Greed and Fear hold since:

– Defecting against cooperators is preferred to mutual cooperation for k > M other
cooperators, RD(k) = b > b(1− c) = RC(k) satisfying Greed.

– Mutual defection is preferred to cooperating with defectors for k < M− 1 other cooperators,
RD(k) = b(1− r) > b(1− c)(1− r) = RC(k) satisfying Fear.

However, the framework of a social dilemma does not fully capture the CRD; as is evident from the
Schelling diagram, the CRD has unique behavior for k = M− 1, where the number of other cooperators
is on the threshold.

We can also visualize the CRD dynamics with the Schelling diagram² in Figure 4.2.2.

²Schelling diagrams are useful representations of games, see Schelling (1973) for more.
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Figure 4.2.2: Schelling diagram for the CRD to illustrate the payoff dynamics given in the proof
above.

Now that we have reviewed the basics of the CRD, we will next highlight some related work. Since its
introduction inMilinski et al. (2008), the CRD has primarily been studied from a replicator dynamics
perspective and with behavioral experiments. Using replicator dynamics, Santos and Pacheco (2011)
finds that cooperation will be maximized when risk is high andN is small, and provides analysis of the
stable and unstable steady states. Numerous behavioral experiments which model the CRD have verified
some of these observations, strengthening the case for applicability of the CRD to real-world social
dilemmas Fernández Domingos et al. (2021).

4.3 CRDNash equilibria characterization

Prior work by Santos and Pacheco (2011) characterized the steady states of the CRD at all-defect x = 0,
all-cooperate state at x = 1, “on the threshold” at x = M− 1/N− 1, and two mixed strategy cooperative
states xL, xR with xL < xR. I show that the all-defect steady state, the steady state at x = M− 1/N− 1, and
xL, xR are Nash equilibria, which is consistent with what we know from 2 – Nash equilibria are a subset of
steady states.

There are two cases of pure strategy Nash which are intuitive.

1. The first pure NE is all defect; forM > 1, switching to cooperate when k = 0 only decreases a
player’s payoff from b(1− r) to b(1− r)(1− c).

2. The second pure NE holds for c < r and is “on the threshold” when the number of total
cooperators isM. In this equilibrium, if a player is defecting then switching to cooperate only
decreases their payoff from b to b(1− c). However, if a player is playing action C, then switching to
D brings the total number of cooperators below the threshold, switching that player’s payoff from
b(1− c) to b(1− r)– this is only a Nash equilibrium when c < r. Note that this constraint is the
same as in Lemma 30.
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We now directly derive the mixed Nash equilibria and show that those two mixed strategy cooperative
states. We first assume symmetric agents and strategies, so we can model the total number of cooperators
as sampled from a Bin(N, x) distribution where x is the probability of cooperation for the symmetric
strategy.

The first quantity in which we are interested are the expected payoffs for playing C,D for some agent i.
We present this in terms of the number of other cooperators k, pc(x) = P(k ≥ M− 1) (probability that
threshold is reached with agent i’s cooperation), and pd(x) = P(k ≥ M) (probability that threshold is
reached without agent i’s cooperation). Following the CRD specification,

πi(C) = b(1− c) [pc(x) + (1− r)(1− pc(x))]

πi(D) = b [pd(x) + (1− r)(1− pd(x))]

A particular value of interest is the difference between these payoffs. Let k ∼ Bin(N− 1, x). Then

πi(C)− πi(D) = b · (rP(k = M− 1)− c(1− rP(k ≤ M− 2)))

See 8 for the algebra.
We can then derive the mixed strategy Nash equilibria directly; an agent will mix when the expected

payoffs are equivalent and πi(C)− πi(D) = 0. Note that the value of the starting endowment does not
affect theMSNE since we assume symmetric endowments.

Theorem 31 (Characterization of CRDMSNE). Let the equilibrium strategy of the MSNE be (x, 1− x),
where x represents the probability of playing C. Let k ∼ Binom(N− 1, x). Then x must satisfy

c =
rP(k = M− 1)

1− rP(k ≤ M− 2)

Proof. We simply manipulate

0 = πi(C)− πi(D)

0 = b · (rP(k = M− 1)− c+ crP(k ≤ M− 2))

0 = rP(k = M− 1)− c+ crP(k ≤ M− 2)

c =
rP(k = M− 1)

1− rP(k ≤ M− 2)

We inspect theMSNE graphically. When there is a CRD(N,M, c, r), x satisfyingTheorem 31 there are
twoMSNE.
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Figure 4.3.1: For N = 20,M = 15, mixed-strategy Nash equilibria given by the probability of coopera-
tion x on the x axis for CRD games with risk r on y axis and cooperation cost c given as level sets. To
read this graph, imagine a horizontal line for a fixed r intersecting the level set for a fixed c, and the
value for x at that point gives the MSNE strategy.

Now that we have analyzed the CRDNash equilibria, we investigate their stability. Stability is
important in this work both

4.4 CRD ESS characterization

Prior work by Santos and Pacheco (2011) showed that the stable steady states of the CRD are the
all-defect state and the mixed strategy xR (the higher cooperative mixed Nash strategy). In this section I
further show that these stable steady states are also evolutionary stable strategies (ESS), a stronger notion
as discussed in 2. I characterize the ESS using the approach outlined in Bach et al. (2006) forN player
threshold games.

We first want to determine the increase in expected payoff for a single agent playing C rather thanD, or
the gain function. Adopting similar notation to that in the EGT treatment in 2, we notate the payoff in the
CRD of playing pure strategies C,D against k collaborators as u(C, k), u(D, k), respectively. We first
determine the additional expected payoff a single agent will obtain by switching fromD to C if k other
players cooperate; call this Δ(k).

Δ(k) = u(C, k)− u(D, k) = b[(1− c)pc(x)− c(1− r)(1− pd(x))− pd(x)]

Nowwe can define the gain function.

Definition 32 (Gain function for CRD). g(x) =
∑N−1

k=0

(N−1
k

)
xk(1− x)N−1−kΔ(k)

Note that g(x) is a polynomial on interval [0, 1].
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We use the gain function to define the expected payoff from a single agent playing strategy ywhile the
remainingN− 1 players are playing strategy x, which as in Bach et al. (2006) we callW.

W(y, x) =
N−1∑
k=0

(
N− 1
k

)
xk(1− x)N−1−ku(D, k) + y · g(x)

Since there are mixed Nash only when this payoff is independent of y Bach et al. (2006), x ∈ (0, 1) can
only be a Nash equilibrium when g(x) = 0 (which is if and only if Δ(k) = 0 for all k, consistent with our
earlier NE analysis).

We now characterize the ESS of the game with respect to the gain function. I follow the theorem and
proof in Bach et al. (2006), with only a difference in the referenced gain function ³.

Theorem 33 (Characterization of ESS of the CRD). We characterize when the Nash equilibria of the CRD
are also ESS.

• If g(0) < 0, then x = 0 is an ESS.

• If g(1) < 1, then x = 1 is an ESS.

• If g(x) = 0 and g′(x) < 0, then x is an ESS.

Proof. Using the definition ofW and the condition for a strategy being an ESS in Broom et al. (1997) for
all y ∈ [0, 1], y 6= x, and ε smaller than some ε(y)

N−1∑
k=0

εk

k!
g(k)(x)(y− x)k+1 < 0

Since ε can be arbitrarily small, we need only concern ourselves with the first nonzero term of the
Taylor expansion. This implies that x = 0 is an ESS if g′(0) < 0 and that x = 1 is an ESS if g′(1) > 0.
Note also that if g(0) > 0, then y = 1 is the unique best response to x = 0 (following a computation of
W), so x = 0 is not a NE. A similar argument holds for x = 1 not being a NE if g(1) < 0.

For the mixed strategies x ∈ (0, 1), from the inequality we see that if g(x) 6= 0 the the inequality
cannot be satisfied for all y since the term (y− x)k+1 can be both positive and negative. However, if for the
odd integer k such that it is the lowest nonzero term g(k)(x) 6= 0, then if g(k)(x) < 0 then the inequality
always holds. Thus for g(x) = 0 and g′(x) < 0, x is an ESS.

To apply this theorem, we inspect the graph of the gain function.

³Note also that Bach et al. (2006) identify further special cases of ESS for their general threshold game, but these special
cases do not apply to the CRD due to the structure of the CRD gain function.
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Figure 4.4.1: Plot of the gain function for CRD(N = 20,M = 15, c = .1, r = .8). Green line gives xL,
red line gives xR.

From the graph we verify that our MSNE calculated in the previous section, xL, xR, satisfy
g(xL) = 0, g(xR) = 0 and see that xR is an ESS since clearly g′(xR) < 0. However, xL is not an ESS
because g′(xL) 6< 0; this is is consistent with the finding in Santos and Pacheco (2011) that xL is not a
stable steady state since ESS are a subset of stable steady states 2.

Showing that the all defect equilibria and xR are ESS strengthens the case for using these strategies as
the base of my model in Chapter 5 and 6.
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5
Model

This model introduces a new extension of the CRD covered in Chapter 4. The extensions aim to capture
the role of a social planner intervening periodically in a population.

5.1 Motivation

Consider the following motivating setting: a government planner wants to prevent pollution from
individual actors but is unable to effectively prevent it. However, the government is able to offer
non-targeted interventions such as pollution prevention education or subsidizing technology with safety
standards that reduce pollution. Furthermore, as is the case in many environmental settings, assume that
the perceived risk among individual actors does not match the true risk posed by further pollution.

In this setting we introduce an extended CRDwhich allows such a social planner to intervene by
changing the CRD’s cost of cooperation parameter c and address a low perceived risk among individual
agents in the CRD.The goal of the social planner is to reduce pollution actions, i.e defecting actions. In
the CRD context, this means the objectives can be both to increase the level of cooperation played at
CRD equilibrium by manipulating c, r, to avert evolutionary shifts towards the evolutionary stable
strategy of all-defect, and to ensure that the CRD agents achieve the threshold.

Furthermore, the CRD as currently defined has one final conclusion – either the risky event occurred
or it did not. If in the extreme the risky event represents something especially undesirable (perhaps
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“catastrophic climate change”), we may want periodic checkpoints before we flip the risk coin. To capture
the potential lasting impact of a defect action (e.g. pollution staying in the environment), we introduce an
intertemporal version of the CRD in which the CRD is played at each time step of anMDP with respect
to the true (not perceived) risk.

The action designed so that it is the planner is able to reverse both the negative effects of a low
perceived risk in the population and the worsening effects of increased cooperation cost as CRD games
fail, reflecting the cascading effects of defection such as pollution.

The action we consider is an economic intervention to subsidize the cost of cooperation for the agents.
The subsidy action is modeled as a percentage decrease in the cost of cooperation; we refer to the
resulting cost as the subsidized cost.

Figure 5.1.1: The curve pictured gives the MSNE x∗ for some (c, r), plotted on the y-axis as the re-
lation c/r. With no action from the planner, the CRD agents play an equilibria at the red dot with
respect to the true cooperation cost and their perceived risk. This level of cooperation is much lower
than that of the true equilibrium at the brown dot, which is with respect to the true cooperation cost
and the true risk. If the planner subsidized the cost, the “correct equilibria” with respect to the true
risk would be at the blue dot. The CRD agents with the subsidized cost would play at an equilib-
rium between the red and blue dot, which is higher than their default. The intertemporal aspect of
the environment is represented by a cooperation cost which increases over time from time step t to
t + 1, making it more difficult to sustain higher levels of cooperation – this is representative of higher
cleanup costs in pollution, for example.
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5.1.1 Formal model

Figure 5.1.2: Diagram indicating the high-level relationship between moving parts in the environ-
ment, the factors that go into computing reward, and the effect of the planner’s action.

TheMDP induced by the above description is defined as follows. We specify only 3 actions for simplicity.
Hyperparameters: β ∈ (0, 1), determines the rate at which cooperation increases / time step

• State:

– Fixed parameters: N ∈ Z+, number of agents,M > N, threshold of cooperative actions,
r′ ∈ (0, 1) perceived risk, r ∈ (0, 1), true risk

– c ∈ (0, 1), cost of cooperation

– c′ ∈ (0, 1), subsidized cost of cooperation

– p ∈ (0, 1), probability of cooperation in CRD equilibrium with respect to r′, c′

– k = N · p

– safe=1 if k > M; else safe=0with probability r, safe=1 otherwise.

• Actions: {a0 = No subsidy, a1 = subsidy, a2 = higher subsidy}

• Transition: (s(t), a) 7→ s(t+1)

– if not safe: c 7→ c · β

– c′, ai 7→ c′ · (1− i/10)

• Reward: R(s, a) = s.k
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6
Results

In this chapter, we provide 1) a brief overview of the implementation of the model given in Chapter 5, 2)
a justification of the environment and learning parameters used to generate results, 3) training results for
both unbudgeted and budgeted planners.

6.1 Model specification

In this section we review further details needed for the implementation of the model. Note that we use an
OpenAI gym environment to facilitate implementation. First to clarify terminology, step refers to steps
within one episode, and an episode refers to a run of a reset environment over steps, and an epoch refers to
a run of a reset agent over episodes so thatQ-values are updated (# of steps) · (# of episodes) times per
epoch.

The RL planner is implemented using Q-learning, as reviewed in Chapter 3. The RL planner is given
the entire state space along with the time step as its observation. The planners actions are as described in
5.1.1.

We review the additional specifications for the environment and the CRD agents. Given a cooperation
cost, we compute the minimum and maximum risk such that a MSNE exists. We scale the minimum and
maximum risk by the challenge parameter, increasing the minimum risk and decreasing the maximum
risk, to yield the the perceived risk and the true risk respectively. This has the effect of making the
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planner’s game achievable; if the perceived risk is exactly on the boundary, a slight increase in cooperation
cost would push the CRD agents into an all-defect state, and the planner’s actions would have to
overcome completely ever increase in cooperation cost to succeed. Again reference Figure 5.1.1 for a
visual representation.

We assume that agents in the inner population will play either of the two ESS: the stable MSNE with
respect to their perceived risk and subsidized cooperation cost, or the all-defect NE. To compute this
MSNE, we follow the analysis from 4 and implement a binary search for the stable MSNE.

6.1.1 Parameter selection

The results use the following parameters.

6.1.2 Environment parameters

There are two key environment parameters: the risk perception difference between the agent population
and the true risk, which I call the “challenge” parameter, and the percentage β by which we increase the
cooperation cost when the CRD outcome is failure. In the implementation, these values are set to
challenge = .1, beta. The environment parameters were chosen carefully to allow a range of behavior and
outcomes. I note three characteristics of the environment. First we choose a finite time step horizon,
number of steps/episode t = 15 for ease of simulation and explainability.

• If no subsidy action is taken at any step, then before halfway through the end of the episode agents
the cooperation cost has increased such that agents now play the all-defect Nash equilibrium.

• If the maximum subsidy action is taken at each step, the cost of cooperation does not increase since
the stable MSNE brings the population above the cooperation threshold in expectation.

• A mixed policy can bring a population back from an all-defect state.

We represent these three properties graphically, plotting the agents’ strategies over the course of an
episode (15 time steps).
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Figure 6.1.1: Without any subsidies, agents will not cooperate above the threshold, and as the CRD
fails the cooperation cost will rise in the environment, forcing the agents’ equilibrium to the all-defect.

Figure 6.1.2: With max subsidies, agents cooperate above the threshold, and since the CRD never
fails the cooperation cost does not increase (and thus does not change the true equilibria), allowing
continued cooperation.
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Figure 6.1.3: With a mixed RL planner policy, it is possible for the planner’s action to push the
agents’ equilibrium strategy from all-defect back to the stable MSNE. Note that this policy is not ul-
timately learned (indeed, it is not optimal for the agents to be in the all-defect state) but is one that
could be explored in the learning process.

6.1.3 Epsilon-GreedyQ-learning parameters

To inform these parameter choices, I referenced Calvano et al. (2020) and experimented with different
parameters.

Exploration/exploitation tradeoff

Since the environment is especially sensitive to ill-timed low subsidy actions, exploration can often result
in significantly lower reward. To address this, I apply a time-declining exploration rate where for episode i,

εt = e−βi

for some β > 0, where larger β results in faster diminishing of exploration.

Learning rate

The learning rate α is directly tied to theQ-learning update function; the larger α is, the more that
Q-values are sensitive to changes in reward and expected value. At the beginning of training, a high
enough α is needed to learn from new actions/states; at the same time, a large α can disrupt learning when
there is frequent exploration since the Q-learning algorithm would too easily “forget” what it learned
before. Due to the complex state space, a relatively high α is chosen but is also subject to a learning rate
decay to balance these considerations.
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Discount factor

The discount factor γ weights future rewards; since we are especially interested in the reward in the last
time step (whether the population was prepared for the “true” risky event), we set γ = .9 to still allow
convergence but better capture this cumulative reward over steps.

6.2 Planner results

6.2.1 Unbudgeted planner

The unbudgeted RL planner learns a strategy which approaches and often reaches optimal reward
(≈ 229). Note that this optimal reward is only achievable if the agents do not play the all-defect
equilibria. However, due to the environment dynamics, there are multiple policies that may achieve
optimal/near-optimal reward.

Figure 6.2.1: It learns! This plot shows cumulative reward per episode over episodes averaged over
10 epochs, with standard error¹ shaded. Learning parameters α = .7 with annealing, ε = .05 with
annealing, 3000 episodes. No budget. The range on the y-axis is the range of rewards possible given
the environment parameters.

We see that a planner can learn to intervene effectively in the intertemporal CRD to both increase
cooperation and avert the risky event occurring in the last time step’s CRD.

A sample learned policy is π = [2, 2, 2, 1, 1, 2, 1, 2, 2, 0, 2, 2, 2, 2, 0] over the 15 time steps. We see that
intervening with a higher subsidy is preferable, and perhaps necessary to stay on track following an
instance of no subsidy. Since the RL planner’s actions are not constrained by a budget, it almost always
acts with the maximum subsidy. We note that the learned CRD agent policies are like those in 6.1.2.
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6.2.2 Budgeted planner

The budget is implemented coarsely, with much room available for further analysis of the effect of the
budget. The planner is limited by some budget parameter B: the budget is decremented proportional to
the action the planner took in the previous time step, and when no budget remains the agent’s chosen
action has no effect on the environment. We plot our results for planners constrained by different degrees
of budget.

Figure 6.2.2: This bar chart plots the max. achievable reward learned by a planner with budget B.
Note that the budget allowing for maximum subsidizing action each time step is B = 30, and the
minimum budget such that the agent can still act is B = 1, and again the range in reward is from 98
to 230.

We find that the planner is still able to learn high-reward policies in this challenging environment, even
for low budgets which only allow a few subsidizing actions.
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7
Conclusion

This thesis provided 1) cohesive exposition on notions of equilibria and stability in game theory and
evolutionary game theory, 2) equilibria and stability analysis of the collective risk dilemma, proving the
strength of stability of the stable states identified in prior work, and 3) extended the CRDmodel to
capture changes over time in the parameters of the CRD, and 4) successfully usedQ-learning to
implement a social planner which is able to prompt agents with a low perceived risk, who would
otherwise play theMSNE with an insufficient level of cooperation, to overcome the CRD threshold and
prevent CRD failure.

There are many avenues for future work. In this model, we allow the CRD agents to play their
evolutionary stable strategies in response to planner interventions. It would be illuminating to use
replicator dynamics or multi-agent reinforcement learning (MARL) to model the CRD agents to see 1)
how long convergence (and if convergence occurs in theMARL case) to evolutionary stable strategies and
2) how effective planner interventions are when CRD agents don’t immediately play their
MSNE/evolutionary stable strategies – indeed, it could be easier for the planner since the effect of an
increase in cooperation cost in the environment would not immediately reduce levels of cooperation in
the population. This extension would better model the real world in which human’s strategies may be
resistant to change or are more discounted. Another extension could leverage the population model of the
CRD, i.e. playing the CRDwithN players sampled from some larger population. Using this version of the
CRD, we could analyze communication among agents in a population and capture any spatial aspects of a
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real world environment (e.g. like in the ASM setting). Ultimately, further study using this extended CRD
model will advance our understanding of how to address social dilemmas in the real world by capturingN
player game dynamics under a social planner.
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8
Appendix

8.0.1 Appendix to Chapter 4

Algebraic derivation for the change in expected payoff from C toD

To be completely certain of our algebraic simplification of the characterization of theMSNE, we provide a
line by line derivation.

πi(C)− πi(D) = b(1− c) (pc + (1− r)(1− pc))− b (pd + (1− r)(1− pd))
= b (pc + (1− r)(1− pc)− cpc − c(1− r)(1− pc)− pd − (1− r)(1− pd))
= b (pc + 1− r− pc + rpc − cpc − c(1− r− pc + rpc)− pd − (1− r− pd + rpd))
= b (rpc − c+ cr− crpc − rpd)
= b (r(pc − pd)− c+ cr(1− pc))
= b (r · P(k = M− 1)− c(1− r · P(k ≤ M− 2))

with the last line as a result of the equalities

1− pc = 1− (1− P(k ≤ M− 2)) = P(k ≤ M− 2)

pc−pd = (1− P(k ≤ M− 2))−(1− P(k ≤ M− 1)) = P(k ≤ M−1)−P(k ≤ M−2) = P(k = M−1)
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