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Abstract

In the sparse recovery problem one wants to reconstruct an approximatelly k-sparse vector

x 2 Rn using time and number of measurements that are sublinear, i.e. way less n, ideally

nearly linear in k. Depending on the setting, measurements correspond to one of the

following: linear combinations of the entries of x, a non-linear function of some linear

function of x , Fourier coefficients, the logical OR of entries in x. In this thesis I describe

several new contributions to the field of sparse recovery, as well as indicate how sparse

recovery techniques can be of great significance in the design of exact algorithms, outside of

the scope of the problems they first were created for.

• Standard Sparse Recovery:

– The state of the art `2/`2 scheme: optimal measurements, O(k log2(n/k)) decod-

ing time and O(log(n/k)) column sparsity, via a new, non-iterative approach.

• Non-linear Sparse Recovery:

– The first sublinear-time algorithm for one-bit compressed sensing.

– A set of O(k logc n)-time algorithms for compressed sensing from intensity only

measurements. The algorithms use O(k log n) measurements, being the first

sublinear-time measurement-optimal algorithms for the problem.

• Sparse Fourier Transform
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– A nearly sample-optimal algorithm for `•/`2 Sparse Fourier Transform in any

dimension.

– A nearly optimal sublinear-time deterministic algorithm for `•/`1 Sparse Fourier

Transform.

• Design of Exact Algorithms

– A nearly optimal algorithm for sparse polynomial multiplication.

– An almost optimal deterministic algorithm for the Modular-SubsetSum problem,

running in time m · 2O(

p
logm·log logm).

– A nearly optimal Las Vegas algorithm for the Modular-SubsetSum problem,

running in time eO(m).

– An (almost) output-sensitive algorithm for the SubsetSum problem.
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Introduction

0.1 Standard Compressed Sensing/Sparse Recovery

Compressed Sensing, or sparse recovery, is a powerful mathematical framework the goal

of which is to reconstruct an approximately k-sparse vector x 2 Rn from linear measure-

ments y = Fx, where F 2 Rm⇥n. The most important goal is to reduce the number of

measurements m needed to approximate the vector x, avoiding the linear dependence on

n. In discrete signal processing, where this framework was initiated [CRT06, Don06], the

core principle that the sparsity of a signal can be exploited to recover it using much fewer

samples than the Shannon-Nyquist Theorem. We refer to the matrix F as the sketching or

sensing matrix, and y = Fx as the sketch of vector x.

Sparse recovery is the primary task of interest in a number of applications, such as

image processing [TLW+06, LDP07, DDT+08], design pooling schemes for biological tests

[ECG+09, DWG+13], pattern matching [CEPR07], combinatorial group testing [SAZ09,

ESAZ09, KBG+10], localizing sources in sensor networks [ZBSG05, ZPB06], as well as

neuroscience [GS12]. Furthermore, not surprisingly, tracking heavy hitters in data streams,

also known as frequent items, can be captured by the sparse recovery framework [Mut05,

CH09, KSZC03, Ind07]. In practice, streaming algorithms for detecting heavy hitters have

been used to find popular destination addresses and heavy bandwidth users by AT&T

[CJK+04] or answer “iceberg queries” in databases [FSGM+99].

Sparse recovery attracts researchers from different communities, from both theoretical

and practical perspective. During the last ten years, hundreds of papers have been published
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by theoretical computer scientists, applied mathematicians and electrical engineers that

specialize in compressed sensing. While numerous algorithms with running time linear in

the universe size n are known, [Don06, CRT06, IR08, NT09a, BIR08, BD09a, SV16] to name

a few, our goal is to obtain algorithms that are sublinear, something that is crucial in many

applications.

The desirable quantities we want to optimize may vary depending on the application.

For example, in network management, xi could denote the total number of packets with

destination i passing through a network router. In such an application, storing the sketching

matrix explicitly is typically not a tenable solution, since this would lead to an enormous

space consumption; the number of possible IP addresses is 232. Moreover, both the query

and the update time should be very fast, in order to avoid congestion on the network.

Incremental updates to x come rapidly, and the changes to the sketch should also be

implemented very fast; we note that in this case, even poly-logarithmic factors might be

prohibitive. Interested readers can refer to [KSZC03, EV03] for more information about

streaming algorithms for network management applications.

Sparse recovery schemes that are optimal across all axis are a challenge and an important

theoretical and practical problem. For most sparse recovery tasks, we have algorithms that

achieve different trade-offs for the various parameters of interest. One exception is the

`•/`2 guarantee, for which the breakthrough work of Larsen, Nelson, Nguyên and Thorup

[LNNT16] shows that this trade-off is unnecessary.

“The goal of that research is to obtain encoding and recovery schemes with good compression

rate (i.e., short sketch lengths) as well as good algorithmic properties (i.e., low encoding, update and

recovery times).” – Anna Gilbert and Piotr Indyk [GI10]

0.1.1 Previous work

Since compressed sensing has been extensively studied in the literature for more than a

decade, different guarantees of interest have been suggested (x�k is the vector that occurs

after zeroing out every i that does not belong among the largest k coordinates). In what
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follows x 2 Rn is the vector we want to sketch, x0 is the approximation to x, k is the sparsity

and e is the fineness of the approximation. The most extensively studied error guarantees

are the following.

• `2/`2 : kx� x0k2  (1+ e)kx�kk2.

• `•/`2 : kx� x0k•  1p
k
kx�kk2.

• `•/`1 : kx� x0k•  1
kkx�kk1.

• `1/`1 : kx� x0k1  (1+ e)kx�kk1.

• `2/`1 : kx� x0k2  (1+ e)

1p
k
kx�kk1.

Regarding the universality of the scheme, there are two different guarantees, one is

the for-all guarantee and the other is the for-each guarantee. In the for-all guarantee, one

wants to design a sketch that gives the desired result for all vectors x 2 Rn. In the for-each

guarantee, one wants to design a distribution over sketches that gives the desired result for

a fixed vector x 2 Rn. We note that `•/`2, `2/`2 are impossible in the for-all model, unless

W(n) measurements are used [CDD09]. The standard approach for the for-all guarantee is

via RIP matrices, satisfying the so-called Restricted Isometry Property. In what follows, we

will refer to the for-each model, unless stated otherwise.

The first set of schemes that initiated the research on compressed sensing are given in

[CRT06, Don06]. There the authors show, for any x 2 Rn, given y = Fx, it is possible to

satisfy the `2/`1 guarantee for all vectors, if F is a Gaussian matrix with O(k log(n/k)) rows.

The schemes in [CM06, CCF02] achieve the `•/`2 guarantee with O(k log n) measurementz,

matching known lower bounds [JST11], O(n log n) decoding time and O(log n) update time.

The state of the art for `•/`2 is [LNNT16], which gives optimal number of measurements,

sublinear decoding time, O(log n) update time and 1/ poly(n) failure probability. Price

and Woodruff [PW11] show that in order to get `2/`2 with constant failure probability

< 1/2 with the output being exactly k-sparse output requires W(e

�2k) measurements. They

also showed non-k-sparse output requires W(e

�1k log(n/k)) measurements in the regime

e >
p

k log n/n, and gave an upper bound of O(e

�1k log n) measurements, showing thus

a separation in the measurement complexity between k-sparse and O(k)-sparse output.

Later, in the breakthrough work of Gilbert, Li, Porat and Strauss [GLPS10] an algorithm
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that runs in sublinear time, and has O(log(n/k) log2 k) column sparsity, was devised. On

generic norms, nearly optimal bounds have been given by Backurs, Indyk, Razenshteyn and

Woodruff [BIRW16]. We note, however, that their schemes are not computationally efficient:

they have exponential running time, except in the case of Earth-Mover-Distance, which has

time polynomial in n and logk n.

Measurements. The number of measurements corresponds to physical resources: memory

in monitoring devices of data streams, number of screens in biological applications, or

number of filters in dynamic spectrum access (DSA) of radio signal [HMT+13].

In applications such as medical imaging, it is crucial to reduce the number of mea-

surements, since the radiation used in CT scans could potentially increase cancer risks

for patients. For instance, [PSL+12] showed that a positive association between radiation

exposure from CT scans in childhood and subsequent risk of leukemia and brain tumors.

For more applications, we refer the readers to [QBI+13].

Encoding Time. Designing algorithms with fast update/encoding time is a well-motivated

task for streaming algorithms, since the packets arrive at an extremely fast rate [TZ12];

even logarithmic factors are crucial in these applications. Also in digital signal processing

applications, in the design of cameras or satellites which demand rapid imaging, when

we observe a sequence of images that are close to each other, we may not need to encode

the new signal from the beginning, rather than encode only that part which differs from

the current signal; the delay is then defined by the update time of our scheme. Moreover,

in Magnetic Resonance Imaging (MRI) update time or encoding time defines the time the

patient waits for the scan to happen. Improvement of the runtime has benefits both for

patients and for healthcare economics [LDSP08].

A natural question is the following: what are the time limitations of our data structures,

regarding update time? Regarding the streaming setting, the first lower bounds are given

in [LNN15] for non-adaptive algorithms. An algorithm is called non-adaptive if, during

updates, the memory cells are written and read depend only on the index being updated
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and the random coins tossed before the stream is started to being processed. The lower

bounds given concern both randomized and deterministic algorithms; the relevant bounds

to sparse recovery are for `p/`q estimation. However, for constant failure probability their

results do not give anything useful, since their lower bounds start to kick in when the failure

probability becomes very small, namely o(2�
p

m·log n
).

For the column sparsity (which could be smaller than update time, and hence the lower

bounds in [LNN15] might not apply1), the only known lower bounds are known for RIP

matrices, which are used in the for-all setting. To the best of our knowledge, the first

non-trivial lower bounds were given by Nachin [Nac10], and then extended by Indyk and

Razenshteyn in [IR13] for RIP-1 model-based compressed sensing matrices. Lower bounds

for the column sparsity of RIP-2 matrices were given in Nelson and Nguyên [NN13], and

then to RIP-p matrices in Allen-Zhu, Gelashvili and Razenshteyn [AZGR16]. Roughly

speaking, the lower bounds for `2 indicate that if one aims for optimal measurements,

m = k log(n/k), in the regime k < n/ log3 n, one cannot obtain column sparsity better than

W(m). This indicates that the for-all case should be significantly worse, in terms of column

sparsity, than the for-each case.

Decoding Time. Another very important quantity we want to minimize is the time needed

to reconstruct the approximation of x from its compressed version. This quantity is of

enormous significance in cases where the universe size is huge and we cannot afford to

iterate over it. This is often the case in networking applications, where the universe size is

the number of distinct IP addresses. In MRI applications the decoding time corresponds

to the time needed to reconstruct the image after the scan has been performed. Decoding

time is highly important also in satellite systems, modern radars and airspace surveillance,

where compressed sensing have found extensive application [End10].

1 the lower bounds in [LNN15] also depend heavily on the streaming model, so they do not transfer
necessarily to all scenarios where sparse recovery finds application.
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Our Contribution. We give the state of the art algorithm for `2/`2 compressed sensing,

which achieves optimal sample complexity, has decoding better than any previous attempt

and is always sublinear (as long as the number of measurements remain sublinear), and

achieves O(log(n/k)) column sparsity, significantly better than previous work. Previous

work on sublinear-time compressed sensing employed an iterative procedure, recovering

the heavy coordinates in phases. We completely depart from that framework, and give

the first sublinear-time `2/`2 scheme which achieves the optimal number of measurements

without iterating; this new approach is the key step to our progress. Towards that, we

satisfy the `2/`2 guarantee by exploiting the heaviness of coordinates in a way that was

not exploited in previous work. Via our techniques we obtain improved results for various

sparse recovery tasks, and indicate possible further applications to problems in the field, to

which the aforementioned iterative procedure creates significant obstructions.

0.2 Sparse Fourier Transform

When the measurements are not arbitrarily chosen, but have to be chosen from a structured

ensemble, the most important subtopic is the sparse Fourier transform, where one desires to

reconstruct a k-sparse vector from Fourier measurements. In Optics imaging [Goo05, Voe11]

and Magnetic resonance imaging (MRI) [ASSN08], the physics [Rey89] of the underlying

device restricts us to the Fourier ensemble, where the sparse Fourier problem becomes

highly relevant. In fact, one of the initial motivations of Candes, Romberg and Tao came

out due to the aforementioned applications. The number of samples plays a crucial role:

they determine the amount of radiation a patient receives in CT scans, and taking fewer

samples can reduce the amount of time the patient needs to stay in the machine. The

framework has found its way in practical life-changing applications. Software includes the

Compressed Sensing GRAB-VIBE, CS SPACE, CS SEMAC and CS TOF by Siemens [Sie],

as well as Compressed Sense by Phillips [Phi]. Its incorporation in the MRI technology

allows faster acquisition rates, depiction of dynamic processes or moving organs, as well as

acceleration of MRI scanning up to a factor of 40. On the webpage of SIEMENS Healthineers,
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for example, one can see the following, as well as numerous similar statements.

This allows bringing the advantages of Compressed Sensing GRASP-VIBE to daily clinical

routine.

• Perform push-button, free-breathing liver dynamics.

• Overcome timing challenges in dynamic imaging and respiratory artifacts.

• Expand the patient population eligible for abdominal MRI.

The Fourier transform is in fact ubiquitous: image processing, audio processing, telecom-

munications, seismology, polynomial multiplication, Subset Sum and other textbook al-

gorithms are a few of the examples where the Fast Fourier Transform finds applications.

The Fast Fourier Transform by Cooley and Tukey [CT65] runs in O(n log n) time, and

has far-reaching applications in all of the aforementioned cases. It is thus expected that

algorithms which exploit sparsity assumptions about the input, and can outperform FFT in

applications are of high practical value. More specifically, sparsity assumptions have given

researchers the hope of defeating the FFT algorithm of Cooley and Tukey, in the special

(but of high practical value) case where the signal is approximately sparse. Moreover, since

FFT serves as an important computational primitive, and has been recognized as one of the

10 most important algorithms of the 20th century [Cip00], every place where it has found

application can possibly be benefited from a faster algorithm. The main intuition and hope

is that signals arising in practice often exhibit certain structures, such as concentration of

energy in a small number of Fourier coefficients.

Generally, the two most important parameters one would like to optimize are the sample

complexity, i.e. the numbers needed to obtain from the time domain, as well as the time

needed to approximate the Fourier Transform.

Two different lines of research exist for the problem: the one focuses solely on sam-

ple complexity, while the other tries to achieve sublinear time while keeping the sample

complexity as low as possible. The first line of research operates via the renowned Re-

stricted Isometry Property (RIP), which proceeds by taking random samples and solving a
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linear/convex program, or an iterative thresholding procedure [CT06, DDTS06, TG07, BD08,

DM08, RV08, BD09b, BD09a, NT09b, NV09, GK09, BD10, NV10, Fou11, Bou14, HR16]. The

analysis of the algorithms is performed in the following way, in two steps. The first step

ensures that, after sampling an appropriate number of points from the time domain, the

inverse DFT matrix restricted on the rows indexed by those points acts as a near isometry on

the space of k-sparse vectors. All of the state of the art results [CT06, RV08, Bou14, HR16]

employ chaining arguments to make the analysis of this sampling procedure as tight as

possible. The second part is how to exploit the aforementioned near-isometry property to

find the best k-sparse approximation to the signal. There the approaches either follow an

iterative procedure which gradually denoise the signal [BD08, NT09b, NV09], or perform `1

minimization [CT06], a method that promotes sparsity of solutions.

The second line of research tries to implement arbitrary linear measurements via sam-

pling Fourier coefficients [GL89, Man92, KM93, GGI+02, AGS03, GMS05, Iwe08, Iwe10,

HIKP12a, HIKP12b, LWC13, Iwe13, PR14, IKP14, IK14, Kap16, Kap17, CI17, BZI17, MZIC17,

LN19] and use sparse functions (in the time domain) which behave like bandpass filters in

the frequency domain. The seminal work of Kapralov [Kap17] achieves O(k log n) samples

and running time that is some log factors away from the sample complexity. This would

be the end of the story, apart from the fact that this algorithm does not scale well with

dimension, since it has an exponential dependence on d. Indeed, in many applications, one

is interested in higher dimensions, rather than the one-dimensional case. The main reason2

why this curse of dimensionality appears is due to the lack of dimension-independent ways

to construct functions that approximate the `• ball and are sufficiently sparse in the time

domain. A very nice work of Kapralov, Velingker and Zandieh [KVZ19] tries to remedy

that by combining the standard execution of FFT with careful aliasing, but their algorithm

works in a noiseless setting, and has a polynomial, rather than linear, dependence on k; the

running time is polynomial in k, log n and the exponential dependence is avoided. It is an

2But not the only one: pseudorandom permutations for sparse FT in high dimensions also incur an
exponential loss, and it is not known whether this can be avoided.
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important and challenging question whether a robust and more efficient algorithm can be

found.

We note that in many applications, such as MRI or computed tomography (CT), the

main focus is the sample complexity; the algorithms that have found their way to industry

are, to the best of our knowledge, not concerned with sublinear running time, but with

the number of measurements, which determine the acquisition time, or in CT the radiation

dose the patient receives. Lastly, we bring to the readers’ attention the recent work on

sparse Fourier transform in the continuous setting, see [Iwe10, Iwe13, Iwe13, BCG+14, PS15,

CKPS16, AKM+18].

Our Contribution (1). We give a randomized algorithm which uses O(k log k log n) sam-

ples, it is dimension-free, it operates for any universe size, and achieves the strongest `•/`2

guarantee, while running in time comparable to the Fast Fourier Transform. All previous

algorithms proceed either via the Restricted Isometry Property or via filter functions. Our

approach totally departs from the aforementioned techniques, and we believe is a fresh look

to the sparse Fourier transform problem.

Our Contribution (2). We give a polynomial time algorithm to find a set of O(k2 log2 n)

samples, which allow computing the best k-term approximation to the Sparse Fourier

Transform of a signal in time O(k2 log3 n). Our approach also yields an algorithm with

O(k2 log n) sample complexity but O(nk log n) running time, as well a nearly optimal

construction of an incoherent matrix, using rows of the DFT matrix.

0.3 Non-Linear Compressed Sensing

0.3.1 Compressed Sensing from Intensity-Only Measurements

In recent years a variant of the sparse recovery problem, called compressive phase retrieval,

has become an active topic, which seeks to recover a sparse signal x 2 Rn (or Cn) from

the phaseless measurements y = |Fx| (or y = |Fx|+ n with post-measurement noise), where

9



|z| denotes a vector formed by taking the absolute value of every coordinate of z. The

primary goal remains the same, i.e. to use as fewer measurements as possible. Such type of

measurements arises in various fields such as optical imaging [SEC+15] and speech signal

processing [RJ93]. There has been rich research in geometric algorithms for this problem (see,

e.g. [CSV13, CLS15b, CLS15a, GWX16, IPSV16, IVW17]) that run in at least polynomial time

while there have been relatively few sublinear time algorithms – [CBJC14, IVW16, PYLR17,

Nak17a] are the only algorithms to the best of our knowledge. Most existing algorithms

consider sparse signals, and thus such sublinear time algorithms have a flavour of code

design, akin to Prony’s method. Among the sublinear-time algorithms, [CBJC14] considers

sparse signals only, [PYLR17] considers sparse signals with random post-measurement

noise, [IVW16] allows adversarial post-measurement noise but has poor recovery guarantee,

[Nak17a] considers near-sparse real signals with no post-measurement noise but achieves

constant-factor approximation and thus outperforms all other sublinear-time algorithms

for real signals. The approach in [Nak17a] employs combinatorial techniques more widely

used in the theoretical computer science literature for the classical sparse recovery problem.

The later work of [LN18] has improved upon [Nak17a], giving a set of new algorithms that

are sample-optimal and run in sublinear time.

More quantitatively, suppose that the decoding algorithm R, given input y = |Fx|,

outputs an approximation bx to x, with the guarantee that the approximation error d(x, bx)

is bounded from above. When x 2 Rn, both x and �x yield the same measurements, the

approximation error d(x, bx) has therefore the form d(x, bx) := min{kx � bxk, kx + bxk} for

some norm k · k. When x 2 Cn, the approximation error d(x, bx) = min
q2[0,2p)

kx � eiqbxk.

Specifically we consider the following three types of error guarantee:

• (`•/`2) min
q2[0,2p)

kx� eiqbxk•  1p
k
kx�kk2 for x 2 Cn;

• (`2/`2) min
q2[0,2p)

kx� eiqbxk2  (1+ e)kx�kk2 for x 2 Cn;

• (`1/`1) min{kx� bxk1, kx+ bxk1}  (1+ e)kx�kk1 for x 2 Rn,

where x�k denotes the vector formed by zeroing out the largest k coordinates (in magnitude)
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of x. Note that when x is noiseless, that is, when x�k = 0, all guarantees mean exact recovery

of x, i.e., bx = x.

Besides the error guarantees, the notions of for-all and for-each in the sparse recovery

problems also extend to the compressive phase retrieval problem. In a for-all problem, the

measurement matrix F is chosen in advance and will work for all input signals x, while in

a for-each problem, the measurement matrix F is usually random such that for each input

x, a random choice of F works with a good probability.

Our Contribution. We give `•/`2 and `2/`2 schemes that achieve O(k log n) measure-

ments and O(k logc n) running time. Previous algorithms either assumed that the signal is

sparse, either ran in significantly worse time and/or satisfied a weaker guarantee. Along the

way, we also develop a new O(k)-measurement and O(k log k)-time algorithm for exactly

k-sparse signals.

0.3.2 One-Bit Compressed Sensing

In modern acquisition systems measurements need to be quantized: that it means that we

have access only to y = Q(Ax) for some Q : Rm ! Am [BB08]. In other words, Q maps

every element of the encoded vector to an element to a finite alphabet A. The most common

paradigm is when A = {�1, 1} and

y = sign(Ax),

where the sign function is applied to any element of the vector. In hardware systems such

as the analog-to-digital converter (ADC), quantization is the primary bottleneck limiting

sample rates [Wal99, LRRB05]. Moreover, as indicated in [LRRB05], the sampling rate has to

decrease exponentially in order for the number of bits to be increased linearly. Furthmore,

power consumption is dominated by the quantizer, leading to increased ADC costs. Thus,

the one-bit compressed sensing framework provides a way to disburden the quantization

bottleneck by reducing the sampling rate, i.e. the total number of measurements [BB08].
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Apart from having important applications, the problem of one-bit compressed sensing is

also interesting from a theoretical perspective, as it is a natural and fundamental question on

high-dimensional geometry. One can think of it in the following way: can we construct a set

of hyperplanes H such that we can approximate the direction a k-sparse vector x 2 Rn given

sign(hx, hi), for all h 2 H? If we want a uniform guarantee, i.e. being able to approximate

the direction of x for every x, this means that every region defined by the hyperplanes and

the sphere must have “small’ diameter. Othewise, if we want to reconstruct the direction of

x with some target probability, then it suffices that most regions defined by the sphere and

the hyperplane have small diameter. The latter formulation is very closely related to the

problem of random hyperplane tesselations [PV14].

Previous Work

The problem of one-bit compressed sensing was introduced in [BB08], and has received

a fair amount of attention till then; one can see [LXZL18] for details. Efficient algorithms,

which proceed by by solving linear or convex programs when the sensing matrix consists

of gaussians, appear in [PV13a, PV13b, GNJN13]. Algorithms that are based on iterative

hard-thresholding have been suggested in [JDDV13, JLBB13]. Moreover, the paper of Plan

and Vershyin [PV14] studies the very relevant problem of random hyperplane tesselations.

The authors in [GNJN13, ABK17] give also combinatorial algorithms for support-recovery

from one-bit measurements using combinatorial structures called union-free families.

The work of [BFN+16] introduces schemes for one-bit compressed sensing for the

scenario where the underlying singal is sparse with respect to an overcomplete dictionary

rather than a basis; this scenario is common in practice. Researchers have also tried to reduce

the reconstruction error by employing different techniques and under different models. One

approach suggested is Sigma-Delta quantization [KSW16, GLP+10]. If adaptivity is allowed

and, moreover, the measurements take the form of threshold signs, the authors in [BFN+17]

show that the reconstruction error can be made exponentially small.
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Figure 1: An illustration of the standard sparse recovery problem in its simplest form. The vector x to be
sensed has a few non-zero coordinates, and F is the sensing matrix, with much less rows than columns. Given
y one wants to reconstruct x.

Figure 2: Examples of sparsity. Subfigure (a) contains an image from the Hubble space telescope. The image
is sparse because it contains a small number of bright pixels, which contain the important information in order
to reconstruct the image. The castle in Subfigure (b) is not sparse, but its wavelet coefficients in Subfigure (c)
give a much sparser representation.

Our Contribution. We give an algorithm for one-bit compressed satisfying what we call

d � `2/`2 guarantee, which uses O(k log n+ d

�2k) measurements, and runs in poly(k · log n)

time. This is the first algorithm for the problem running in sublinear time, and even

compares with the best super-linear time algorithm in terms of sample complexity; precisely,

for k  n1�g it is uses less measurements.
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Figure 3: Light waves reflected off the sculpture enter the first lens and are refracted (bent) as a function of
their spatial frequencies. Lower frequency waves are only weakly refracted, passing straight through the center
of the lens. Higher frequency waves are refracted more at the edges. The "output" of the first lens is a series of
unfocused wave fronts with higher spatial frequencies toward the periphery and lower frequencies toward the
center. These waves constructively and destructively interfere. The first lens has thus performed an "optical"
Fourier transformation of the incident light rays. If you put your head midway between the two lenses (at the
so-called Fourier plane) and looked back towards the Queen, you would see nothing except a vague diffuse
glow representing the average intensity of light entering the first lens. The light waves are unfocused and
would not form a picture on your retina. You are in "optical" k-space. The second lens reverses this procedure,
reassembling the waves dispersed in optical k-space back to their original relationships. The second lens thus
performs an inverse Fourier transform, allowing the creation of a focused image.

Figure 4: A typical setup of Coherent Diffractive Imaging, which gives rise to a signal recovery problem
from phaseless measurements. In the basic CDI setup (forward scattering), an object is illuminated by a
quasi-monochromatic coherent wave, and the diffracted intensity is measured. When the object is small and
the intensity is measured far away, the measured intensity is proportional to the magnitude of the Fourier
transform of the wave at the object plane, with appropriate spatial scaling.
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Figure 5: A synthetic example demonstrating the importance of phase in reconstructing a signal from its
Fourier transform.

0.4 Sparse Polynomial Multiplication

Multiplying two polynomials is a fundamental computational primitive, with multiple

applications in computer science. Using the Fast Fourier Transform, one can perform

multiplication of polynomials stored as vectors of floating point numbers, in time O(n log n),

where n is a bound on the largest degree.

An important and natural question is whether, and under which circumstances, a

faster algorithm can be invented. Researchers have tried to obtain algorithms that beat the

O(n log n)-time bound, when the two polynomials are sparse, i.e. the number of non-zero

terms in each polynomial is at most s. Interestingly, some ideas from the relevant literature

have found applications in computer algebra packages such as Maple, Mathematica and

Singular, including ways to represent and store polynomials [Maz01, MP14, MP15, GR16].

When two polynomials have at most k coefficients, the trivial algorithm givesO(k2 log n log s)

time, which is already and improvement for s 
p
n. It is important though to obtain an

algorithm that is output-sensitive, i.e. runs in nearly linear time with respect to k, the num-

ber of non-zero coefficients in the product. A result of Cole and Hariharan [CH02] obtains

an algorithm that runs in O(k log2 n) time, when the coefficients of the two polynomials

are non-negative. A data structure for carefully allocating and de-allocating memory has

been designed in [Yan98], trying to tackle the problem of memory handling can be the main

bottleneck in complexity of sparse multiplication in practical scenarios. The aforementioned
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algorithm is based on a heap, an idea which was also lead to implementations developed

in [MP07, MP09, MP14, MP15]. The authors in [MP09] develop a parallel algorithm for

multiplying sparse distributed polynomials, where each core uses a heap of pointers to

multiply parts of polynomials, exploiting its L3 cache. The same authors in [MP14] have

created a data structure suitable for the Maple kernel, that allows for obtains significant

performance in many Maple library routines.

When the support of the product is known or structured, work in [Roc08, Roc11,

VDHL12, VDHL13] indicates how to perform the multiplication fast. Using techniques

from spare interpolation, Aarnold and Roche [AR15] have given an algorithm that runs

in time that is nearly linear in the “structural sparsity” of the product, i.e. the sumset of

the supports of the two polynomials. When there are not “too many” cancellations, this is

roughly the same as the size of the support of the product, and the above algorithm is quite

efficient. However, in the presence of a considerable amount of cancellations in the product,

the aforementioned algorithm becomes sub-optimal. Removing this obstacle seems to be

the final step, and has been posed as an open problem in the excellent survey of [Roc18].

In this thesis, we resolve the aforementioned open question, giving an algorithm that

is nearly optimal in the size of the input plus the size of the output. Due to its small

computational complexity and simplicity, we expect our algorithm to be implemented in

modern computer algebra software.

We note that one can use the rather heavy hammer of the sparse Fourier transform

[GMS05, HIKP12a, HIKP12b, Kap16, Kap17, KVZ19] to obtain nearly optimal algorithms

for sparse polynomial multiplication, but these algorithms come at a cost, since they are

way more complicated, and invoke the filter functions; functions which are sparse in the

time domain and approximate the `• box in the frequency domain.

Our Contribution. We give a clean, nearly optimal for multiplying two sparse polynomials

with integer coefficients. Our algorithm runs in time which is proportional to the size of the

input plus the size of the output.
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0.5 Subset Sum

SubsetSum is one of the most important problems in computer science, and is taught in

almost every undregraduate course. In this problem we are given a set S of n integers

and a target t, and are asked to find a subset of S that sums up to t. The problem has

been established as NP-complete by Karp [Kar72], and belonged to his initial list of NP-

complete problems. Belmman’s classical algorithm from 1957 [Bel57] solves the problem in

pseudopolynomial O(n · t) time, and it’s an archetypical example of algorithm design via

dynamic programming. Another classical algorithm is the “meet-in-the-middle” algorithm

of [HS74] , which gives O(2n/2) time, regardless of the value of t. Using RAM parallelism

Pisinger showed how to shave a log t factor from the pseudopolynomial algorithm [Pis03],

thus being the first improvement over Bellman’s classical approach. If all elements are

bounded by M, Pisinger has also showed how to obtain a pseudopolynomial solution

in O(nM) time. Apart from being a cornerstone in algorithm design, SubsetSum has

also played an important role in cryptography: Merkel and Hellman [MH78] based their

cryptosystem on it, something that initiated work in cryptostystems based on Knapskack,

see [Sha84, BO88, CR88, Odl90, IN96].

The SubsetSum problem has given rise to a plethora of algorithmic techniques, some

of which have been recorded in books devoted to the specific problem [KPP04, MT90].

The problem still attracts a lot of researches, with important algorithmic contributions

happening the last 10 years [O’B11, LMS11, BCJ11, DDKS12, AKKM13, GS17, AKKN15,

AKKN16, LWWW16, BGNV17, Ned17, Bri17, KX17, JW18, ABHS19, ABJ+19]. The work of

[BGNV17] shows that with polynomial space one can beat the trivial bound of 2n, while

in Merlin-Arthur setting Nederlof showed that the running time can become T1/2nO(1).

Very recently, the work of Koiliaris and Xu [KX17] gave the first deterministic algorithm

for SubsetSum that runs in time eO(min{
p
nt, t4/3}), while the almost independent work of

Bringmann [Bri17] gave a randomized eO(t+ n)-time algorithm. Two years later, another

eO(t+ n) algorithm [JW18] showed up, which proceeds by cleverly manipulating formal

series. The running time of [Bri17] and [JW18] is optimal under the Strong Exponential
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Time Hypothesis, as proved in [ABHS19].

Possibly the most important generalization of Subset Sum is the ModularSubsetSum

problem, where the addition operation is performed over Zm. The structural properties of

the problem have been investigated in the field of Additive Combinatorics for more than half

a century[EGZ61, Ols68, Ols75, Alo87, NSV08, Sze70, Vu08]. The dynamic programming

approach to ModularSubsetSum runs in time O(mn), but, interestingly enough, going

beyond this barrier requires new ideas, as well as different techniques from the latest

improvements in the non-modular case. The fastest deterministic algorithm runs in time

eO(min{
p
nm,m5/4

)}) [KX17], while the fastest randomized algorithm due to Axiotis et.al.

[ABJ+19] runs in time eO(m+ n); the latter algorithm matches a conditional lower bound

from from [ABHS19], similar to the standard Subset Sum problem. The deterministic

approach of [KX17] carefully partitions the input into sets that can be covered by arithmetic

progressions, then solves each arithmetic progression separately and combines the results

with multiple FFTs. The algorithm of [ABJ+19] takes a totally different route, and manages

to improve Bellman’s dynamic programming approach by using a sophisticated hashing

approach to compute the new attainable subset sums after insertion of every element;

interestingly enough, their approach crucially exploits the modularity of the problem, and

does not extend to Subset Sum.

Our contribution (1). We give the first deterministic algorithm for Modular Subset Sum

that runs in O(m1+o(1)
) time; in specific our algorithm runs in time that is proportional to

the number of all attainable sums times an mo(1) factor. This almost matches the randomized

algorithm of [ABJ+19] and the lower bound of [ABHS19], and is polynomially better than

the previous deterministic algorithm by Koiliaris and Xu [KX17]. Along the way we obtain

a state of the art deterministic algorithm for sumset computation, which should be of

independent interst.

Our approach also yields state of the art result or the randomized version of the problem.

We obtain a Las Vegas algorithm running in eO(m) time, a mild improvement over the

algorithm of [ABJ+19] which was Monte Carlo. We also give a novel, nearly optimal Las
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Vegas algorithm for sumset computation, which we believe is significantly simpler than the

previous Las Vegas algorithm for the problem [CH02].

Our improvements are obtained by delving deeper into the additive structure of Mod-

ular Subset Sum than previous work. Rougly speaking, our algorithms proceed by

computing all attainable subset sums in a bottom-up fashion and carefully define a “termi-

nating condition”; when the condition is satisfied, this forces the solution space to have a

specific additive structure, which we then exploit.

Our Contribution (2). We give an almost output sensitive randomized algorithm for

the classical Subset Sum problem. Precisely, let S(S, t) be the set of all attainable subset

sums of S which are at most t. Our algorithm runs in time proportional to (ignoring

logarithmic factors) |S(S, t+ t/poly(log t))|. The textbook algorithm of Bellman runs in

time O(|S| · S(S, t)), while the algorithm of Bringmann [Bri17] runs in time eQ(t). Thus,

although the latter matches a conditional lower bound from the k-Clique problem [ABHS19],

in many interesting cases the textbook dynamic programming algorithm can be much better.

Moreover, both algorithms proceed by computing S(S, t), the set of all subset sums. In light

of the above, our algorithm should be viewed as making considerable progress in obtaining

the best of both worlds.
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Chapter 1

Standard Compressed Sensing

1.1 `2/`2 Compressed Sensing; Without Iterating

1.1.1 Our result

Our main result is a novel scheme for `2/`2 sparse recovery. Our contribution lies in

obtaining better decoding time, and O(log(n/k)) column sparsity via new techniques. The

problem of improving the column sparsity to O(log(n/k)) was explicitly stated in [GLPS10]

as an open problem. Moreover, as an important technical contribution, we introduce a

different approach for sublinear-time optimal-measurement sparse recovery tasks. Since this

iterative loop is a crucial component of almost all algorithms in sublinear-time compressed

sensing [IPW11, PS12, HIKP12a, GNP+13, IKP14, Kap16, GLPS17, CKSZ17, Kap17, LNW18,

NSWZ18], we believe our new approach and ideas will appear useful in the relevant

literature, as well as be a starting point for re-examining sparse recovery tasks under a

different lens, and obtaining improved bounds.

1.1.2 Notation

For x 2 Rn we let H(x, k) to be the set of the largest k in magnitude coordinates of x. We

also write xS for the vector obtained after zeroing out every xi, /2 S, and x�k = x
[n]\H(x,k).

We use k · kp to denote the `p norm of a vector, i.e. kxkp = (Ân
i=1 |xi|p)

1/p.
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Reference Measurements Decoding Time Encoding Time
[Don06, CRT06] k log(n/k) LP k log(n/k)
[CCF02, CM06] e

�2k log n e

�1n log n log n
[NT09a] k log(n/k) nk log(n/k) log(n/k)
[CM04] e

�2k log2 n e

�1k logc n log2 n
[CCF02, CM06] e

�2k logc n e

�1k log2 n logc n
[GLPS10] e

�1k log(n/k) e

�1k logc n log(n/k) · log2 k
Our result e

�1k log(n/k) e

�1k log2(n/k) log(n/k)

Table 1.1: (A list of `2/`2-sparse recovery results). We ignore the “O” for simplicity. LP denotes the time of
solving Linear Programs [CLS19], and the state-of-the-art algorithm takes nw time where w is the exponent of
matrix multiplication. The results in [Don06, CRT06, NT09a] do not explicitly state the `2/`2 guarantee, but
their approach obtains it by an application of the Johnson-Lindenstrauss Lemma; they also cannot facilitate
e < 1, obtaining thus only a 2-approximation. The c in previous work is a sufficiently large constant, not
explicitly stated, which is defined by probabilistically picking an error-correcting code of short length and
iterating over all codewords. We estimate c � 4. We note that our runtime is (almost) achieved by [HIKP12a],
but our running time is always sublinear in n, in contrast to [HIKP12a] which can be up to n log n.

1.1.3 Technical statements

We proceed with the definition of the `2/`2 sparse recovery problem.

Problem 1.1.1 (`2/`2 sparse recovery). Given parameters e, k, n, and a vector x 2 Rn. The goal is

to design some matrix F 2 Rm⇥n and a recovery algorithm A such that for y = Fx, x0 = A(F, y))

x0 satisfies

kx0 � xk2  (1+ e) min
k- sparse z2Rn

kz� xk2.

We primarily want to minimize m (which is the number of measurements), the running time of A

(which is the decoding time) and column sparsity of F.

In table 1.1, we provide a list of the previous results and compare with ours. Here, we

formally present our main result.

Theorem 1.1.2 (stronger `2/`2 sparse recovery). There exists a randomized construction of a

linear sketch F 2 Rm⇥n with m = O(e

�1k log(n/k)) and column sparsity O(log(n/k)), such
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that given y = Fx, we can find an O(k)-sparse vector x0 2 Rn in O(m · log(n/k)) time such that

kx0 � xk2  (1+ e) min
k- sparse z2Rn

kz� xk2.

holds with 9/10 probability.

Remark 1.1.3. In the regime where k is very close to n, for example k = n/poly(log n), we get an

exponential improvement on the column sparsity over [GLPS10]. In many applications of compressed

sensing, this is the desired regime of interest, check for example Figure 8 from [BI08]: n = 71, 542

while m � 10, 000, which corresponds to k being very close to n.

Remark 1.1.4. As can be inferred from the proof, our algorithms runs in time O((k/e) log2(en/k)+

(k/e) log(1/e)), which is slightly better than the one stated in Theorem 1.1. The algorithm

in [HIKP12a] achieves also the slightly worse running time of O((k/e) log n log(n/k)). That

algorithm was the first algorithm that achieved running time O(n log n) for all values of k, e for

which the measurement complexity remained sublinear, smaller than gn, for some absolute constant

g. A careful inspection shows that our algorithm achieves running time that is always sublinear, as

long as the measurement complexity remains smaller than gn.

1.1.4 Overview of techniques and difference with previous work

This subsection is devoted to highlighting the difference between our approach and the

approach of [GLPS10]. We first give a brief high-level description of the state of the art

algorithm before our work, then discuss our techniques, and try to highlight why the

previous approach could not obtain the stronger result we present in this paper. Lastly, we

show how our ideas can be possibly applied to other contexts.

Summary of [GLPS10].

The algorithm of [GLPS10] consists of O(log k) rounds: in the r-th round the algorithm

finds a constant fraction of the remaining heavy hitters. Beyond this iterative loop lies the

following idea about achieving the `2/`2 guarantee: in order to achieve it, you can find

all but k
3r heavy hitters i such that |xi|2 = W(

2re
k kx�kk22). This means that the algorithm is
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allowed to “miss” a small fraction of the heavy hitters, depending on their magnitude. For

example, if all heavy hitters are as small as Q(

p
e/kkx�kk2), a correct algorithm may even

not find any of them. This crucial observation leads naturally to the main iterative loop of

combinatorial compressed sensing, which, as said before, loop proceeds in O(log k) rounds.

Every round consists of an identification and an estimation step: in the identification step

most heavy hitters are recognized, while in the estimation step most of them are estimated

correctly. Although in the estimation step some coordinates might have completely incorrect

estimates, this is guaranteed (with some probability) be fixed in a later round. The reason

why this will be fixed is the following. If a coordinate i is badly estimated, then it will

appear very large in the residual signal and hence will be identified in later rounds, till

it is estimated correctly. One can observe that the correct estimation of that round for

coordinate i cancels out (remedies) the mistakes of previous rounds on coordinate i. Thus,

the identification and estimation procedure, which are interleaved, work complementary

to each other. The authors of [GLPS10] were the first that carefully managed to argue

that identifying and estimating a constant fraction of heavy hitters per iteration, gives the

optimal number of measurements.

More formally, the authors prove the following iterative loop invariant, where kr =

k3�r, er = er2�r for r 2 [R] with R = log k: Given x 2 Rn there exists a sequence of vectors

{x(r)}r2[R], such that x(r+1)
= x(r) � bx(r) and

k(x� bx)�krk22  (1+ er)kx�krk22. (1.1)

In the end, one can apply the above inequality inductively to show that

kx�
R

Â
r=1

bx(r)k22  (1+ e)kx�kk22.

We now proceed by briefly describing the implementations of the identification and

the estimation part of [GLPS10]. In the identification part, in which lies the main technical

contribution of that work, every coordinate i 2 [n] is hashed to O(k/e) buckets and in

each bucket O(log(en/k))-measurement scheme based on error-correcting codes is used
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to identify a heavy hitter; the authors carefully use a random error-correcting code of

length O(log log(en/k)), so they afford to iterate over all codewords and employ a more

sophisticated approach and use nearest-neighbor decoding. This difference is one of the

main technical ideas that allow them to obtain O(e

�1k log(n/k)) measurements, beating

previous work, but it is also the main reason why they obtain k · poly(log n) decoding time1:

performing nearest neighbor decoding and storing the code per bucket incurs additional

poly(log n) factors. Moreover, for every iteration r they need to repeat the identification

scheme r times in order to bring down the failure probability to 2�r, so that they afford a

union-bound over all iterations. This leads to an additional O(log2 k) factor in the update

time. The estimation step consists of hashing to O(k/e) buckets and repeating O(log(1/e))

times. Since the identification step returns O(k/e) coordinates, the O(log(1/e)) repetitions

of the estimation step ensure that at most k/3 coordinates out of the O(k/e) will not be

estimated correctly. This is a desired property, since it allows the algorithm to keep the 2k

coordinates with the largest estimates, subtract them from x and iterate.

In the next section, we will lay out our approach which improves the decoding time and

the column sparsity of [GLPS10]. The iterative procedure of [GLPS10] lies in the heart of

most compressed sensing schemes, so we believe that this new approach could be applied

elsewhere in the sparse recovery literature.

Our approach

As we mentioned before, our approach is totally different from previous work, avoiding the

iterative loop that all algorithms before applied. Our algorithm consists of four steps, each

one being a different matrix responsible for a different task. The first matrix, with a constant

number of rows allows us to approximate the tail of the vector x, an approximation that

will appear useful in the next step. The second matrix along with its decoding procedure,

which should be regarded as the identification step, enables us to find a list L of size O(k/e)

1The authors do not specifically address the exponent in the poly(log n), but we estimate it to be � 4.
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that contains k coordinates2, which are sufficient for the `2/`2 guarantee. This matrix has

O(e

�1k · log(en/k))) rows. The third matrix with its decoding procedure, which should

be regarded as the pruning step, takes the aforementioned list L, and prunes it down

to O(k) coordinates, which are sufficient for the `2/`2 guarantee. This matrix again has

O(e

�1k · log(1/e)) rows, for a total of O(e

�1k log(n/k)) rows. The last matrix is a standard

set-query sketch.

Step 1: Tail Estimation

Lemma 1.1.5 (tail estimation). Let c1 � 1 denote some fixed constant. There is an oblivious

construction of matrix F 2 Rm⇥n with m = O(log(1/d)) and column sparsity O(log(1/d)) such

that, given Fx, there is an algorithm that outputs a value V 2 R in time O(m) such that

1
10k

kx�c1·kk22  V  1
k
kx�kk22

holds with probability 1� d.

Our first step towards the way for stronger sparse recovery is the design a routine

that estimates the `2 norm of the tail of a vector x 2 Rn, which we believe might be

interesting in its own right. More generally, our algorithm obtains a value V such that

1
10kkx�c1·kk

p
p  V  1

kkx�kkpp, using O(1) measurements. Here c1 is some absolute constant.

To obtain this result we subsample the vector at rate Q(1/k) and then use a p-stable

distribution to approximate the subsampled vector. While the upper bound is immediate,

the Paley-Zygmund inequality does not give a sufficient result for the lower bound, so more

careful arguments are needed to prove the desired result. We obtain our result by employing

a random walk argument.

One additional possible application in sparse recovery applications where a two-stage

scheme is allowed, e.g. [DLTY06, DDT+08], would be to first use the above routine to

roughly estimate how many heavy coordinates exist, before setting up the measurements.

2We note that this term is exactly k, not O(k). Although not important for our main result, it will be crucial
for some of our applications of our techniques.
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For example, we could first run the above routine for k = 1, 2, 22, . . . , 2log n, obtaining values

V1,V2,V4, . . . ,Vlog n, and then use these values to estimate the size of the tail of the vector

is, or equivalently approximate the size of the set of the heavy coordinates by a number

k0. We can then run a sparse recovery algorithm with sparsity k0. Details can be found in

Section 1.4.

Step 2: The Identification Step The goal of this step is to output a list L of size O(k/e)

that contains a set of k coordinates that are sufficient to satisfy the `2/`2 guarantee. The

column sparsity we are shooting for at this point is O(log(en/k)) , and the decoding time

should be O(m log(en/k)).

Lemma 1.1.6 (identification sketch). There exists a randomized construction of a matrix F 2

Rm⇥n, with m = O(e

�1k · log(en/k)) and column sparsity O(log(en/k)), such that given

y = Fx, one can find a set L of size O(k/e) in O(m log(en/k)) time, such that

9T ⇢ S, |T|  k : kx� xTk2  (1+ e)kx�kk2,

holds with probability at least 9/10.

For this routine, we will set up a hierarchical separation of [n] to trees. We will call this

separation interval forest. we set t = k/e. Then we partition [n] into t intervals of length

q = n/t, and set up an interval tree for each interval in the following way: every interval

tree has branching factor

log q
log log q

with the same height (this is consistent with the fact that every tree contains q nodes). At

the leaves of every interval tree there are the nodes of the corresponding interval.

Our approach consists is now the following. For each level of the interval forest we hash

everyone to k/e buckets in the following way: if two coordinates i, i0 are in the same interval

(node of the interval forest) they are hashed to the same bucket. The above property can be

regarded as “hashing interval to buckets”. Moreover, every xi is multiplied by a Gaussian
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random variable. We repeat this process for log log(en/k) per level.

The decoding algorithm is the following. First, we obtain a value V using the routine

in Step 1, Lemma 1.1.5. Then we proceed in a breadth-first (or depth-first, it will make no

difference) search manner and find an estimate for every interval, similarly to [LNNT16,

CH09], by taking the median of the log log(en/k) buckets it participates to. There are two

technical things one needs to show: First, we should bound the decoding time, as well as

the size of the output list L. Second, we need to show that there exists a set T0 of size at

most k that satisfies the guarantee of the Lemma 1.1.6. For the first part, we show that

the branching process defined by the execution of the algorithm is bounded due to the

log log(en/k) repetitions per level. For the second part, we show that for every coordinate

i 2 H(x, k) the probability that i 2 L is proportional to k|xi|2/(ekx�kk22). Then we show

that the expected `22 mass of coordinates i 2 L \ H(x, k) is ekx�kk22. This suffices to give the

desired guarantee for Lemma 1.1.6.

We provide details in Section 1.2.

Step 3: The Pruning Step

Lemma 1.1.7 (pruning sketch). Let c2, c3 > 1 denote two fixed constants. There exists a random-

ized construction of a matrix F 2 Rm⇥n, with m = O(e

�1k · log(1/e)), with column sparsity

O(log(1/e)) such that the following holds :

Suppose that one is given a (fixed) set L ✓ [n] such that

|L| = O(k/e), 9T ⇢ L, |T|  k : kx� xTk2  (1+ e)kx�kk2.

Then one can find a set S of size c2 · k in time O(m), such that

kx� xSk2  (1+ c3 · e)kx�kk2

holds with probability 9/10.

We will now prune the list L obtained from the previous step, to O(k) coordinates. We

are going to use O(e

�1k · log(1/e)) measurements. We hash every coordinate to k/e buckets,
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combining with Gaussians, and repeating O(log(1/e)) times. A similar matrix was also

used in [GLPS10], but there the functionality and the analysis were very different; moreover,

the authors used random signs instead of Gaussians. We will heavily exploit the fact that

a standard normal g satisfies Pr[|g| < x] = O(x). The reasons why we need Gaussians is

the following: if we have a lot of large coordinates which are equal and much larger than
p

ekx�kk2, we want to find all of them, but due to the use of random signs, they might

cancel each other in a measurement. Switching to Gaussians is the easiest way of avoiding

this undesirable case.

Our algorithm computes, for every i 2 L, an estimate bxi by taking the median of the

O(log(1/e)) buckets it participates to, and then keeps the largest O(k) coordinates in

magnitude to form a set S. We then show that these coordinates satisfy the `2/`2 guarantee.

We will say that a coordinate is well-estimated if |bxi| = Q(|xi|)±
p

ek�1kx�kk2. For the

analysis, we define a threshold t = kx�kk2/
p
k, and classify coordinates based on whether

|xi| � t or not.

• In the case |xi| � t the expected mass of these coordinates i /2 S is small;

• In the other case the number of coordinates i with |xi| < t are O(k). This allows us to

employ an exchange argument, similar to previous work, e.g. [PW11], but more tricky

due to the use of Gaussians instead of random signs.

We note that the way we compute the estimates bxi is different from previous work: one

would expect to divide the content of a bucket that i hashed to by the coefficient assigned to

xi, in order to get an unbiased estimator, but this will not work. The details can be found in

Section 1.3.

In the end, this step gives us a set S suitable for our goal, but does not give good

estimations of the coordinates inside that set. For that we need another, standard step.

Step 4: Set Query We estimate every coordinate in S using a set query algorithm of Price

[Pri11], obtaining the desired guarantee. This matrix needs only O(k/e) measurements, and

runs in O(k) time, while having constant column sparsity.
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Lemma 1.1.8 (set query, [Pri11]). For any e 2 (0, 1/10]. There exists a randomized construction

of a matrix F 2 Rm⇥n, with m = O(k/e) and column sparsity O(1), such that given y = Fx and

a set S ✓ [n] of size at most k, one can find a k-sparse vector bxS, supported on S in O(m) time, such

that

kbxS � xSk22  ekx
[n]\Sk22.

holds with probability at least 1� 1/ poly(k).

Our Theorem 1.1.2 follows from the above four steps by feeding the output of each

step to the next one. In the end, we rescale e. More specifically, by the identification step

we obtain a set L of size O(k/e) which contains a subset of size k that satisfies the `2/`2

guarantee. Then, the conditions for applying the pruning step are satisfied, and hence we

can prune the set L down to O(k) coordinates, which satisfy the `2/`2 guarantee. Then we

apply the set-query sketch to obtain estimates of these coordinates.

In what follows we ignore constant terms. The number of measurements in total is

1
|{z}

tail estimation

+ (k/e) log(en/k)
| {z }

identification step

+ (k/e) log(1/e)

| {z }

pruning step

+ (k/e)

| {z }

set query

.

The decoding time equals

1
|{z}

tail estimation

+ (k/e) log(en/k) log(en/k)
| {z }

identification step

+ (k/e) log(1/e)

| {z }

pruning step

+ k
|{z}

set query

.

The column sparsity equals

1
|{z}

tail estimation

+ log(en/k)
| {z }

identification step

+ log(1/e)

| {z }

pruning step

+ 1
|{z}

set query

.

1.1.5 Possible applications of our approach to other problems

Exactly k-sparse signals. When the vector we have to output has to be k-sparse, and not

O(k)-sparse, the dependence on e has to be quadratic [PW11]. Our algorithm yields a state

of the art result for this case, too. One can observe that the analysis of the algorithm in
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Section 1.2 outputs a O(k/e)-sized set which contains a set T of size k that allows `2/`2

sparse recovery. Performing a CountSketch with O(k/e

2
) columns and O(log(k/e) rows,

and following a standard analysis, one can obtain a sublinear algorithm with measurement

complexity O(e

�1k log(en/k) + e

�2k log(k/e)). This is an improvemnet on both the runtime

and measurement complexity over previous work [CCF02].

Block-Sparse Signals. Our algorithm easily extends to block-sparse signals. For a signal of

block size b we obtain sample complexity O(k/(eb) log(bn/k) + (k/e)), with a running time

nearly linear in k. This matches the sample complexity of previous super-linear algorithms

[BCDH10, CIHB09], which also could not facilitate e < 1.

Phaseless Compressed Sensing. In Phaseless Compressed Sensing, one wants to design

a matrix F with m rows, such that given y = Fx, one can find a vector bx such that

min
q2[0,2p]

kx� eiqbxk2  (1+ e)kx�kk2. This problem has received a fair amount of atten-

tion [OYDS11, LV13, CBJC14, YLPR15, PYLR17, Nak17a, LN18], and the state of the art

algorithm has O(k log n) measurement complexity [Nak17a, LN18]. One of the problems

is that the iterative loop approach cannot be used here, since it is heavily based on the

linearity of the sketch. However, our identification and pruning step do not use the linearity

of the sketch, and work also with phaseless measurements. Previous algorithms such as

[Nak17a, LN18] suffered a k log n factor in the number of measurements already from the

first step, but this is avoidablue using our new approach. We hope to see an extension down

this avenue that gives O(k log(n/k)) measurements.

One-Bit Compressed Sensing. Another important subfield of Sparse Recovery is one-bit

compressed sensing, where one has access only to one-bit measurements, i.e. y = sign(Ax),

where the sign function on vectors should be understood as pointwise application of the

sign function on each entry. Sublinear algorithms appear in [Nak17b, Nak19], but they both

do not obtain the optimal number of measurements in terms of k and n, which is k log(n/k),

but rather the slightly suboptimal k log n. One of the most important reasons is that the

30



iterative loop cannot be implemented in such a scenario. It is a natural question whether our

new approach can give the optimal number of measurements. The thresholding step, namely

the part where we take use V to filter out non-heavy intervals cannot be implemented here,

but perhaps there is still a way to make a similar argument. One first approach should be to

show that sublinear decoding with optimal measurements is achieved using non-adaptive

threshold measurements, such as in [KSW16] and [BFN+17] (note that the latter one uses

adaptive measurements though).

Sparse Fourier Transform. The standard approach to discrete sparse Fourier transform,

is to implement linear measurements by using Fourier measurements [GGI+02, GMS05,

HIKP12a, HIKP12b, Iwe13, IKP14, IK14, Kap16, CKSZ17, Kap17]. The idea is to hash the

spectrum to B buckets by carefully multiplying in the time-domain the vector x with a

sparse vector z. In the frequency domain this corresponds to convolving the spectrum of the

x with an approximation of the filter of an indicator function of an interval of length roughly

B. Due to the Uncertainty Principle, however, one has to exchange measurement complexity

and decoding time with the quality of the filter. For example, implementing hashing to

buckets using “crude” filters leads to leakage in subsequent buckets, giving additional error

terms. When iterating as usual, these errors accumulate and make identification much

harder. The sophisticated approach of [Kap17] manages to design an iterative algorithm, in

the same vein with previous algorithms, which takes O(e

�1k log n) measurements. It would

be interesting to see if the approach we suggest avoids some of the problems created by

this iterative loop, and can give simpler and faster sparse Fourier transform schemes. It

would be interesting to obtain such a result even using adaptive measurements. The work

[CKSZ17] has some interesting ideas in the context of block-sparse vectors that could be

relevant.

1.2 The Identification Linear Sketch

The goal of this section is to prove the following result,
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Theorem 1.2.1 (Restatement of Lemma 1.1.6). Let CL > 1 be a fixed constant. There exists a

randomized construction of a matrix F 2 Rm⇥n, with

m = O(e

�1k log(en/k)),

with column sparsity O(log(en/k)) such that given y = Fx, one can find in time O(m log(n/k))

a set L of size CL · k/e, such that

9T ⇢ L, |T|  k : kx� xTk2  (1+ e)kx�kk2,

with probability 9/10.

In Section 1.2.1, we provide the definition of sketching matrix F and present the decoding

algorithm. We proved some concentration result in Section 1.2.2. We analyzed the running

time of algorithm in Section 1.2.3. We proved the guarantees of the algorithm in Section 1.2.4.

Finally, we bound the number of measurements in Section 1.2.5.

1.2.1 Design of the sketch and decoding algorithm

Notation Choice Statement Parameter
CH 4 Definition 1.2.3 H
CR 100 Definition 1.2.4 R
CB 105 Definition 1.2.5 B
C0 103 Lemma 1.4.4 Blow up on tail size
CL 104 Lemma 1.2.9 L
h 1/9 Lemma 1.2.6,1.2.7 Shrinking factor on V
z 1/4000 Lemma 1.2.6,1.2.7 z  h/400

Table 1.2: Summary of constants in Section 1.2, the column “Parameter” indicates which parameter is
depending on that constant. Note that constants CH ,CR,CB,C0, h are used in both algorithm and analysis,
but constants CL and z are only being used in analysis. CL is the related to the guarantee of the output of the
algorithm.

We are going to use a hierarchical separation of [n] into intervals. We will call this

separation an interval forest.

Before discussing the matrix, we need the following definitions. We define
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Definition 1.2.2 (size of the each tree in the forest). Let

t = k/e,

assuming that k/e  n/16. The size of each tree in the forest is

q = n/t = ne/k

Definition 1.2.3 (degree and height of the interval forest). Let CH > 1 be a sufficiently large

constant such that

(

log q/ log log q
)

CH log q/ log log q � q.

Let D denote the degree of the tree, and let H denote the height of the tree. We set D and H,

D = dlog q/ log log qe, and H = dCH log q/ log log qe.

Definition 1.2.4 (number of repetitions per level). Let R denote the number of repetitions in

each level. Let CR > 1 denote some sufficiently large constant. We set R = CR log log q.

For ` 2 {0, 1, . . . ,H} we define I`, which is a family of sets. Every set I` is a decompo-

sition of [n] to tD` intervals of (roughly) the same length. The set I0 is a decomposition

of [n] to t intervals of (roughly) the same length length q. If needed, we can round q to a

power of 2. This means that

I0 = {I0,1, I0,2, . . .}

where

I0,1 = [1, t], I0,2 = [t + 1, 2t], . . .

We can conceptualize these sets as a forest consisting of t trees, each of branching factor

D and height H, where the `-th level partitions [n] into disjoint tD` intervals of length

n/(t · D`
) = q · D�`. For ` 2 {0, . . . ,H}, interval I`,j is decomposed to D disjoint and
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continuous intervals

I`+1,j·D+1, . . . , I`+1,(j+1)·D

of the same length, except possibly the last interval.

We say that an interval I`+1,j is a child of interval I`,j0 if j0 = dj/De.

Definition 1.2.5 (sketching matrix F). Let CB > 1 be a sufficiently large constant. Let B =

CBk/e. Let matrices F(1), . . . ,F(H), where every matrix F(`) consists of R submatrices {F(`)
r }r2[R].

For every ` 2 [H] and r 2 [R], we pick 2-wise independent hash functions h`,r : [tD`
] ! [B].

We define measurement y`,r,b = (F(`)
r x)b as:

y`,r,b = Â
j2h�1

`,r (b)
Â
i2I`,j

gi,`,rxj,

where gi,`,r ⇠ N (0, 1), i.e. independent standard Gaussians.

We slightly abuse notation and treat y as matrix the mapping to vector should be clear.

Note that CB should be chosen such that CB � C0, where C0 appears in tail estimation

in Lemma 1.4.4.

1.2.2 Concentration of estimation

In the following lemmata, z, h 2 (0, 1) are absolute constants with 1 > h > 1/10 > z (See

a choice for our application in Table 1.2). The exact values of the constants will be chosen

below.

The following lemma handles the probability of detecting a heavy interval at level `.

Lemma 1.2.6 (handling the probability of catching a heavy hitter). Let V be the value in Line

8 of Algorithm 1. Let V = eV be the value in Line 9 of Algorithm 1. Let j0 2 T`�1, and let j be one

of its children. Let zj be defined as follows,

zj = median
r2[R]

�

�

�

y`,r,h`,r(j)
�

�

�

2
.
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Algorithm 1 interval-forest sparse recovery
1: procedure IntervalForestSparseRecovery(x, n, k, e) . Theorem 1.2.1
2: Choose constants CH, CR, h, C0 . According to Table 1.2
3: t  (k/e) . Definition 1.2.2
4: q  n/t . Definition 1.2.2
5: H  dCH log q/ log log qe . Definition 1.2.3
6: D  dlog q/ log log qe . Definition 1.2.3
7: R  dCR log log qe . Definition 1.2.4
8: V  LpLpTailEstimation(x, k, 2,C0, 1/100) . Algorithm 3
9: V  eV . Lemma 1.2.6
10: T0  {I0,1, . . . , I0,t}
11: for ` = 1 ! H do
12: T`  RecursiveBTree(`,R,D, h, T`�1,V) . Lemma 1.2.9
13: end for
14: L  TH
15: return L . Lemma 1.2.10
16: end procedure
17: procedure RecursiveBTree(`,R,D, h, T,V)
18: T0  ∆
19: for t 2 T do
20: Let I`,j1 , I`,j2 , . . . , I`,jD denote the child intervals of I`�1,t
21: for p 2 [D] do
22: zjp  medianr2[R]|y`,r,h`,r(jp)|2 . Definition 1.2.5
23: end for
24: if zjp � hV then
25: T0  T0 [ {jp}
26: end if
27: end for
28: return T0

29: end procedure

If kxI`,jk22 � Cj
e

kkx�kk22, where Cj � 2, then with probability 1� C�R/6
j (over the randomness of

h`,r and gi,`,r for r 2 [R], i 2 [n] in Definition 1.2.5), we have that

zj � hV.

Proof. Fix r 2 [R]. Let b = h`,r(j), and define J = [t2h�1
`,r (b)

I`,t. We observe that

|y`,r,b|2 = kxJk22g2, where g ⇠ N (0, 1).
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By property of Gaussian distribution, we have

Pr
⇥

|y`,r,b|2  (h/Cj)kxJk22
⇤

 2p
2p

s

h

Cj

s

2h

pCj
,

It implies, since kxJk22 � kxI`,jk22 � Cj
e

kkx�kk22, that

Pr
h

|y`,r,b|2  h

e

k
kx�kk22

i


s

2h

pCj
.

Since Lemma 1.4.4, we have V  1
kkx�kk22. Because V = eV,

Pr
⇥

|y`,r,b|2  hV
⇤


s

2h

pCj
.

The R repetitions ensure that the failure probability can be driven down to C�R/6
j ,

because

Pr[zj  hV] 
✓

R
R/2

◆

·
 s

2h

pCj

!R/2

 2R · (2h/p)

R/4 · C�R/4
j

 (2R · (2h/p)

R/4 · 2�R/12
) · C�R/6

j


⇣

211 · (2/9p)

3
⌘R/12

· C�R/6
j

 C�R/6
j ,

where the first step follows from a union bound, the third step follows from Cj � 2, and

the forth step follows from h  1/9.

The following lemma handles the probability of a non-heavy interval being considered

“heavy” by the algorithm at level `.

Lemma 1.2.7 (handling the probability of false positives). Let V be the value in Line 9 of

Algorithm 1. Let j0 be an index in T`�1, and let j be one of its children. If kxI`,jk22  z

e

kkx�C0kk22,

then with probability 1 � 2�R/3 (over the randomness of h`,r and gi,`,r for r 2 [R], i 2 [n] in
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Definition 1.2.5) we have that

zj < hV.

Proof. Fix ` 2 [H] and consider the set H` that contains the C0k coordinates j00 with the

largest kxI`,j00 k22 values. Define H(j)
` = H` \ {j}. Fix r 2 [R] and observe that by a union-

bound we get that

Pr
h

9j00 2 H(j)
`

�

� h`,r(j) = h`,r(j00)
i

 C0k ·
1

CBk/e

=

C0e

CB
 1

20
,

because CB � 20C0.

We condition on the event 8j00 2 H(j)
` : h`,r(j) 6= h`,r(j00). A standard calculation now

shows that

E
h

|y`,r,hr,`(j)|
2
i

 kxI`,jk22 +
1
CB

e

k
kx�C0kk22

 z

e

k
kx�C0kk22 +

1
CB

e

k
kx�C0kk22

 2ze

k
kx�C0kk22,

where the last step follows from 1
CB

< z.

We now apply Markov’s inequality to obtain

Pr
h

|y`,r,h`,r(j)|
2 � hV

i

 Pr
h

|y`,r,h`,r(j)|
2 � he

10k
kx�C0kk22

i


2ze

k kx�C0kk22
he

10kkx�C0kk22
=

20z

h

 1
20

, by z  h/400.

By a union bound, the unconditional probability Pr
h

|y`,r,h`,r(j)|2 � hV
i

 1
10 . Finally, we
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can upper bound the probability that zj = medianr2[R]|y`,r,h`,r(j)|2 is greater than hV,

Pr[zj � hV] 
✓

R
R/2

◆

(1/10)R/2

< 2R · 2� 3
2R

= 2�
R
2

< 2�
R
3 .

1.2.3 Analysis of running time

Lemma 1.2.8 (bounds of D,H with respect to R). Let D,H as in Definition 1.2.3. It holds that

D  2
R
6 �10, and H  2

R
6 �10.

Proof. Since H � D, it suffices to prove the claim only for H.

H = CH
log q

log log q
< CH log q = CH log

(

en/k
)

= CH2log log(en/k)  2
R
6 �10,

where the third step follows from q = en/k, and the last step follows from log log(en/k) +

logCH  (CR/6) log log(en/k)� 10 and note that log log(en/k) � 2 because we assume

k/e  n/16.

Lemma 1.2.9 (running time). Let R as in Definition 1.2.4 and D, H as in Definition 1.2.3. Let

TH be the set obtained by applying procedure RecursiveBTree H times (lines 11-13) of Algorithm

1, and let CL > 1 be some sufficiently large absolute constant. With probability 1� H · 2�R/6+1 we

have that:

• |TH |  CL · k/e,

• The running time of BTreeSparseRecovery is

O
⇣

e

�1k · log(en/k) · D
⌘

.
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Proof. Let CL = 2(C0 + 1/z).

First, it is easy to see that |T0| is bounded by

|T0| = t = k/e < CLk/e.

We claim that if we condition on the event that |T`�1|  CLk/e, then with probability

1� 2�R/6+1, |T`|  CLk/e. The proof of both bullets will then follow by a union-bound over

all H levels. Indeed, consider the set Q` containing the |T`�1|D  CL · (k/e) · D coordinates

j that are children of some j0 2 T`�1. Define

B` =

⇢

j 2 Q`

�

�

�

�

kxI`,jk22  z

e

k
kx�C0kk22

�

.

By definition of B` and Q`, we have

|B`|  |Q`|  CL · (k/e) · D.

Moreover, Lemma 1.2.7 gives

8j 2 B`, Pr
⇥

zj � hV
⇤

 2�R/3

Define random variables Wj to be 1 if zj � hV, and 0 otherwise. Then

E

"

Â
j2B`

Wj

#

 CLk
e

D · 2�R/3

An application of Markov’s inequality gives

Pr

"

Â
j2B`

Wj �
CLk
2e

D · 2�R/6

#

 2�R/6+1.

Conditioning on Âj2B` Wj  CLk
2e

D · 2�R/6 we will upper bound the size of T`.

First, observe that there exist at most (C0k + k/(ze)) j 2 I` for which kxI`,jk22 >

z

e

kkx�C0kk22. This gives

|T`| 
✓

C0k+
k

ze

◆

+

CLk
2e

D2�R/6. (1.2)
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If CL � 2(C0 + 1/z), then we can upper bound the first term in Eq. (1.2),

C0k+
k

ze


✓

C0 +
1
z

◆

k
e

 1
2
CLk

e

.

For the second term in Eq. (1.2), we can show that

CLk
2e

· D2�R/6  1
2
CLk

e

,

or equivalently D  2R/6, which holds by Lemma 1.2.8.

We have D levels, and at each level ` we have |T`| = O(k/e), conditioned on the

aforementioned events happening. The children of T` is then O(k/e · D). Since we have R

repetitions the total running time per level is O((k/e) · D · R), and the total running time is

O((k/e) · D · R · H) = O
✓

(k/e) · D · log log q · log q
log log q

◆

= O
(

(k/e) · D · log(en/k)
)

,

where the first step follows from definition of R and H, and the last step follows from

definition of q.

Therefore, it gives the desired result.

1.2.4 Guarantees of the algorithm

Lemma 1.2.10 (guarantees). Let L = TH be the set obtained by applying procedure RecursiveB-

Tree R times (lines 11-13) of Algorithm 1, we have that, with probability 9/10, there exist T0 ✓ L

of size at most k, such that

kx� xT0 k22  (1+ e)kx�kk22.

Proof. Define

H =

⇢

j 2 H(x, k)
�

�

�

�

9Cj � 2, |xj|2 � Cj
e

k
kx�kk22

�

.

Moreover, associate every j 2 H with its corresponding Cj =
|xj|2

e

k kx�kk22
.

40



Pick j 2 H. Let also j1, j2, . . . , jH, be numbers such that

j 2 I1,j1 , j 2 I2,j2 , . . . , j 2 IR,jH .

For any t 2 {1, . . . ,H � 1}, if It,jt 2 Tt, then It+1,jt+1 2 Tt+1 with probability 1� C�R/6
j , by

Lemma 1.2.6. Since Cj � 2, this allows us to take a union bound over all H levels and claim

that with probablity 1� HC�R/6
j , j 2 TR. For j 2 H define random variable to dj to be 1 if

j /2 TH.

E
h

djx2j
i

 H · C�R/6
j x2j

 H · C�R/6
j Cj

e

k
kx�kk22

= H · C�R/6+1
j

e

k
kx�kk22

 e

80k
kx�kk22,

where the first step follows by definition of dj, the second step follows by the fact that j 2 H,

and the last step follows by Lemma 1.2.8. Since |H|  k, we have that

E

"

Â
j2H

djx2j

#

 |H| · e

80k
kx�kk22 

e

80
kx�kk22.

Then applying Markov’s inequality, we have

Pr

"

Â
j2H

djx2j >
e

2
kx�kk22

#

 1
40

.

We condition on the event Âj2H djx2j  e

2kx�kk22. Setting T0
= H \ TH we observe that

kx� xT0 k22 = Â
j2H\H(x,k)

djx2j + kxH(x,k)\Hk22 + kx
[n]\H(x,k)k22

 e

2
kx�kk22 + k · 2e

k
kx�kk22 + kx�kk22

 (1+ 3e)kx�kk22.

where the second step follows by the bound on Âj2T djx2j and the fact that every j /2 T

satisfies |xj|2  (2e/k)kx�kk22.

41



Rescaling for e we get the desired result.

1.2.5 Bounding the number of measurements

In this subsection, we prove that

Claim 1.2.11 (#measurements). The number of measurements is O(e

�1k · log(en/k)).

Proof. Recall the definition of t and q,

t = k/e, q = n/t.

We thus have the following bound on the number of measurements:

B · H · R = CB(k/e) · CH
log(en/k)

log log(en/k)
· CR log log(en/k) = O

(

(k/e) log(en/k)
)

.

1.3 The Pruning Linear Sketch

The goal of this section is to prove Theorem 1.3.1.

Theorem 1.3.1 (Restatement of Lemma 1.1.7). Let CL, a, b > 1 be three fixed constants. There

exists a randomized construction of a matrix F 2 Rm⇥n, with m = O((k/e) · log(1/e)), with

column sparsity O(log(1/e)) such that the following holds :

Suppose that one is given a set L ✓ [n] such that

|L| = CL · k/e, 9T ⇢ L, |T|  k : kx� xTk2  (1+ e)kx�kk2.

Then procedure Prune (Algorithm 2) can find a set S of size b · k in time O(m), such that

kx� xSk2  (1+ a · e)kx�kk2

holds with probability 9/10.

In Section 1.3.1, we provide some basic definitions and description of our algorithm. We

analyze the coordinates from several perspectives in Section 1.3.2. We prove the correctness
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of our algorithm in Section 1.3.3 and analyze time, number of measurements column sparsity,

success probability of algorithm in Section 1.3.4.

1.3.1 Design of the sketching matrix, and helpful definitions

Notation Choice Statement Parameter
CR 104 + 500CL Definition 1.3.2 R
CB 5⇥ 105 Definition 1.3.2 B
Cg 4/5 Fact 1.3.3 Gaussian variable
CL 104 Theorem 1.3.1 L
a 5 Theorem 1.3.1 Blow up on e

b 100 Theorem 1.3.1 Blow up on k

Table 1.3: Summary of constants in Section 1.3, the column “Parameter” indicates which parameter is
depending on that constant. Note that set L is the input of the algorithm in Section 1.3 and the output of the
algorithm in Section 1.2.

Definition 1.3.2 (sketching matrix F). Let CR,CB > 1 be absolute constants. Let R =

CR log(1/e). Let B = CBk/e. For r 2 [R], we pick 2-wise independent hash function hr : [n] ! [B],

as well as normal random variables {gi,r}i2[n],r2[R] and take measurements

yr,b = Â
i2h�1

r (b)

xigi,r.

Given the set L, for every i 2 L we calculate

zi = median
r2[R]

|yr,hr(i)|,

and keep the indices i with the bk largest zi values to form a set S of indices, for some

absolute constant b sufficiently large. We describe this pruning step in Algorithm 2. For the

analysis, we define the threshold

t = kx�kk2/
p
k. (1.3)

We will need the following standard fact about the Gaussian distribution. Then we proceed

with a series of definitions and lemmata.
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Algorithm 2 the prune procedure

1: procedure Prune(x, n, k, e, L) . Theorem 1.3.1
2: R  CR log(1/e)

3: B  CBk/e

4: for r = 1 ! R do
5: Sample hr : [n] ! [B] ⇠ 2-wise independent family
6: for i = 1 ! n do
7: Sample gi,r ⇠ N (0, 1)
8: end for
9: end for
10: for r = 1 ! R do
11: for b = 1 ! B do
12: yr,b  Âi2h�1

r (b) xigi,r
13: end for
14: end for
15: for i 2 L do
16: zi  medianr2[R] |yr,hr(i)|
17: end for
18: S  {i 2 L : zi is in the top bk largest coordinates in vector z}
19: return S
20: end procedure

Fact 1.3.3 (property of Gaussian). Suppose x ⇠ N (0, s2
) is a Gaussian random variable. For any

t 2 (0, s] we have

Pr[x � t] 2


1
2
(1� 4

5
t
s

),
1
2
(1� 2

3
t
s

)

�

.

Similarly, if x ⇠ N (µ, s2
), for any t 2 (0, s], we have

Pr[|x| � t] 2


1� 4
5
t
s

, 1� 2
3
t
s

�

.

The form we will need is the following:

Pr
g⇠N (0,1)

[|g|  t]  4
5
t.

Thought the analysis, for convenience we will set Cg = 4/5. Another form we will need is:

Pr
g⇠N (0,1)



|g| 2
h 1
3Cg

, 2
i

�

� 0.63

Proof. The first form is true by simple calculation. The second form is holding due to
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numerical values of cdf for normal distribution,

Pr


|gi,r| 2
h 1
3Cg

, 2
i

�

= 2( f (2)� f (1/3Cg)) = 2( f (2)� f (5/12)) � 2(0.977� 0.662) = 0.63,

where f (x) =
R x
�•

e�x2/2p
2p

dx is the cdf of normal distribution.

Stochastic dominance is a partial order between random variables and it is a classical

concept in decision theory and decision analysis [HR69, Baw75]. We give the simplest

definition below and it is sufficient for our application.

Definition 1.3.4 (stochastic domination of Gaussian random variables). Let s1 < s2 and

random variables X ⇠ N (0, s2
1 ),Y ⇠ N (0, s2

2 ). Then we say that |Y| stochastically dominates |X|,

and it holds that

Pr
[

|Y| � l

]

� Pr
[

|X| � l

]

, 8l � 0.

We formally define the set L as follows:

Definition 1.3.5 (set L, input of the algorithm). Let CL > 1 be a fixed constant, and let set

L ✓ [n] be defined as:

|L| = CL · k/e, 9T ⇢ |T|  k : kx� xTk2  (1+ e)kx�kk2.

We provide a definition called “badly-estimated coordinate”,

Definition 1.3.6 (badly-estimated coordinate). We will say a coordinate i 2 [n] is badly-estimated

if

zi /2


1
3Cg

|xi|�
1
100

p
ep
k
kx�kk2, 2|xi|+

1
100

p
ep
k
kx�kk2

�

,

Then, we can define “badly-estimated set”,

Definition 1.3.7 (badly-estimated set B). Let set L be defined as Definition 1.3.5. We say B ✓ L

is a badly-estimated set if for all i 2 B, zi is a badly estimated coordinate (see Definition 1.3.6).

We define a set of large coordinates in head,
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Definition 1.3.8 (large coordinates in head). Let t be defined in (1.3). Let L be defined in

Definition 1.3.5. Let Cg be the constant from Fact 1.3.3. Define set

M = {i 2 L \ H(x, k) : |xi| � 3Cgt},

which contains the head coordinates of x that are in L and are larger in magnitude than 3Cgt.

1.3.2 Analyzing head and badly-estimated coordinates

Lemma 1.3.9 (expected error from coordinates above t). We have that

E

"

Â
i2M

x2i · 1zi<t

#

 e

100
kx�kk22.

Proof. Fix i 2 M. Observe that for r 2 [R]

|y0r,hr(i)| ⇠ kxh�1
r (i)k2|N (0, 1)|.

Since

kxh�1
r (i)k2 � |xi|

we have that the random variable |y0r,hr(i)| stochastically dominates the random variable

|xi| · |N (0, 1)|.

By Fact 1.3.3, we have that

Pr
h

|y0r,hr(i)|  t

i

 Cg
t

|xi|
.

Because of the R = CR log(1/e) repetitions, a standard argument gives that

Pr
[

1zi<t

= 1
]


✓

Cg
t

|xi|

◆C0 log(1/e)

,

for some absolute constant C0 > CR/3.
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We now bound

E

"

Â
i2M

x2i · 1zi<t

#

 Â
i2M

x2i

✓

Cg
t

|xi|

◆C0 log(1/e)

= Â
i2M

C2
gt

2
✓

Cg
t

|xi|

◆C0 log(1/e)�2

 k · t

2 · e

100

=

e

100
kx�kk22,

where the first step follows by the bound on E
[

1zi<t

]

= Pr
[

1zi<t

= 1
]

, and the third

step by choosing by choosing CR > 1 to be some sufficiently large constant and the facts

C0 > CR/3 and (Cgt)/|xi|  1/3.

Lemma 1.3.10 (probability of a fixed coordinate is badly-estimated). A coordinate i is badly-

estimated (as in Definition 1.3.6) probability at most

e

3

1002CL
.

Proof. Fix r and set set b = hr(i). Recall the definition of yr,b = Âi2h�1
r (b) xigi,r in Defini-

tion 1.3.2. We have that
�

�

�

�

�

�

|gi,rxi|�

�

�

�

�

�

�

Â
j2h�1

r (b)\{i}
gj,rxj

�

�

�

�

�

�

�

�

�

�

�

�

 |yr,b|  |gi,rxi|+

�

�

�

�

�

�

Â
j2h�1

r (b)\{i}
gj,rxj

�

�

�

�

�

�

,

Now, |gi,rxi| will be at in [(1/3Cg)|xi|, 2|xi|] with probability at least 0.63 (due to Fact 1.3.3).

Moreover, for any j 2 H(x, k) \ {i}, hr(j) 6= b with probability 1� 1/B = 1� e/(CBk) �

1 � 1/(CBk). By a union bound, we get with probability at least 1 � 1/CB, for all j 2

H(x, k) \ {i}, hr(j) 6= b. Conditioning on this event, we have,
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E

2

6

4

0

@ Â
j2h�1

r (b)\{i}
gj,rxj

1

A

2
3

7

5

=

e

CBk
kx�kk22.

We then apply Markov’s inequality to get that with probability at least 1� 104/CB,

0

@ Â
j2h�1

r (b)\{i}
gj,rxj

1

A

2

 e

104k
kx�kk22.

Therefore, by a union bound,

Pr


|yr,b| 2


1
3Cg

|xi|�
1
100

p
ep
k
, 2|xi|+

1
100

p
ep
k

��

� 0.63� 1
CB

� 104

CB

� 0.6,

where the last step follows by CB � 5⇥ 105.

Note that zi is obtained by taking median of R copies of i.i.d. |yr,b|. For each r 2 [R], we

define Zr = 1 if |yr,b| falls into that region, and 0 otherwise. We have E[ÂR
r=1 Zr] � 0.6R.

Using Chernoff bound, we have

Pr

"

R

Â
r=1

Zr < 0.9 · 0.6R
#

 Pr

"

R

Â
r=1

Zr < 0.9E[
R

Â
r=1

Zr]

#

 e�
1
3 0.1

2 E[ÂR
r=1 Zr ]

 e�
1
3 0.1

2·0.6R

Thus,

Pr


zi 62


1
3Cg

|xi|�
1
100

p
ep
k
, 2|xi|+

1
100

p
ep
k

��

 e�
1
3 0.1

2·0.6R

 2�0.002R

= 2�0.002CR log(1/e)

 2�0.002(10000+500CL) log(1/e)

 e

3

1002CL
,
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where the third step follows from choice of CR.

1.3.3 Guarantee of algorithm

We now proceed with the proof of Theorem 1.3.1.

Proof. By Lemma 1.3.9 and an application of Markov’s inequality we have that

Â
i2M

x2i · 1zi<t

 ekx�kk22,

with probability 99/100. Let this event be E1.

Moreover, by Lemma 1.3.10,

E[|B|]  e

3|L|
1002CL

,

so, by Markov’s inequality, we have

Pr


|B|  e

2|L|
100CL

�

� 1� e/100 � 99/100

Let this event be E2.

By taking a union bound, E1 and E2 both hold with probability 98/100. Plugging size of

|L| ( CL · k/e) into equation of event E2, we get

|B|  e

2|L|
100CL

 ek
100

. (1.4)

It means there are at most ek/100 coordinates that badly-estimated.

We remind that our goal is to bound

kx� xSk22 = kxSk22

= kxS\Mk22 + kxS\Mk22

= kxS\Mk22 + kx
(S\M)\Bk22 + kx

(S\M)\Bk22
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1. Bounding kxM\Sk22. Consider the set

I = {i 2 L \M : |xi| � t/3},

which contains the coordinates in Lwith magnitude in the range [ 13t, 3Cgt). By the definition

of t, clearly, |I|  3k+ k = 4k, because we can have at most k such elements in H(x, k),

and at most 3k such elements in the tail [n] \ H(x, k). Since the number of badly estimated

coordinates is at most ek/100 and the size of S is bk for sufficiently large b, we can have at

most 4k+ ek/100 < bk coordinates i 2 L which are not in M and are larger than t. This

means that all coordinates in M with estimate zi � t will belong to S. This implies that

M \ S = {i 2 M : zi < t},

and hence

kxM\Sk22 = Â
i2M

x2i · 1zi<t

 ekx�kk22,

since we conditioned on event E1.

2. Bounding kx
(S\M)\Bk22. For every i 2 (S \M) \ B) we have the trivial bound |xi|  t.

Since (S \M) \ B) ✓ B, because the event E2 we get that

kx
(S\M)\Bk22  |B| · t

2  ek
100

· kx�kk22
k

=

e

100
kx�kk22,

where the second step follows from (1.4) and (1.3).

3. Bounding kx
(S\M)\Bk22. Observe that set (S \M) \ B consists of well-estimated coordi-

nates that are less than t in magnitude, and their estimates do not belong to the largest bk

estimates. For convenience, set Q = (S \M) \ B, then it is obvious that Q = S\(M [ B).

We define three sets H1, H2, H3 as follows,

H1 = Q \ T, H2 = Q \ T, and H3 = (T\(M [ B))\S.
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Using the definition of Q, we can rewrite H1, H2, and H3 as follows

H1 = (S\(M [ B)) \ T = S \M [ B \ T,

H2 = (S\(M [ B)) \ T = S \M [ B \ T,

H3 = (T\(M [ B))\S = S \M [ B \ T.

We can show that

H2 \ H3 = (S \M [ B \ T) [ (S \M [ B \ T)

= ∆, (1.5)

and

H2 [ H3 = (S \M [ B \ T) \ (S \M [ B \ T)

= M [ B \ T

= T\(M [ B). (1.6)

Then,

kxQk22 = kxH1k22 + kxH2k22

= kxH1k22 + (kxT\(M[B)k22 � kxH3k22)

 kxH1k22 + kxTk22 � kxH3k22

 kxH1k22 + (1+ e)kx�kk22 � kxH3k22,

where first step follows from H1 \ H2 = ∆ and H1 [ H2 = Q, the second step follows

from Eq. (1.5) and (1.6), the third step follows from kxT\(M[B)k22  kxTk22 and the last step

follows from kxTk22  (1+ e)kx�kk22.

We define d, E, a, b as follows

d = |H1|, E =

1
4
p

e/kkx�kk2, a = max
i2H1

|xi|, b = min
i2H3

|xi|. (1.7)
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Let i⇤ and j⇤ be defined as follows:

i⇤ = argmax
i2H1

|xi|, and j⇤ = argmin
j2H3

|xj|. (1.8)

Recall the definitions of H1 and H3, we know H3 is a subset of S and H1 is a subset of S.

Since the set S contains the largest bk coordinates, thus we have

zj � zi, 8i 2 H1, j 2 H3.

It further implies zj⇤ � zi⇤ .

By Definition 1.3.6, we have

zi⇤ �
1

3Cg
|xi⇤ |�

1
100

p
ep
k
kx�kk2, (1.9)

and

zj⇤  2|xj⇤ |+
1
100

p
ep
k
kx�kk2. (1.10)

Then, we can show that a  6Cgb+ E in the following sense:

a = |xi⇤ | by def. of i⇤, a, (1.8), (1.7)

 3Cgzi⇤ +
3Cg

100
p

e/kkx�kk2 by (1.9)

 3Cgzj⇤ +
3Cg

200
p

e/kkx�kk2 by zi⇤  zj⇤

 6Cg|xj⇤ |+
6Cg

200
p

e/kkx�kk2 by (1.10)

= 6Cgb+
6Cg

200
p

e/kkx�kk2 by def. of j⇤, b, (1.8), (1.7)

 6Cgb+ E by def. of E, (1.7)

Note that H3 = (T \ (M [ B)) \ S = S \ (T [M [ B). Therefore,

|H3| � |S|� |T|� |M|� |B|

� bk� k� k� k

= (b � 3)k.
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Finally, we can have

kxH1k22 � kxH3k22  da2 � (b � 3)kb2

 d(6Cgb+ E)2 � (b � 3)kb2 by a  6Cgb+ E

= (36C2
gd� (b � 3)k)b2 + 12CgbdE+ dE2

 (36C2
gk� (b � 3)k)b2 + 12CgbkE+ kE2 by d  k

 (36C2
gk� (b � 5C2

g)k)b
2
+ 12CgbkE+ kE2 by Cg � 4/5

 � 36kC2
gb

2
+ 12CgbkE+ kE2 by b � 77C2

g

= � k(6Cgb� E)2 + 2kE2

 2kE2

 ekx�kk22.

where the last step follows from definition of E.

Thus, we have

kxQk22  (1+ 2e)kx�kk22.

Putting it all together. We have

kx� xSk22 = kxS\Mk22 + kx
(S\M)\Bk22 + kx

(S\M)\Bk22

 ekx�kk22 +
e

100
kx�kk22 + (1+ 2e)kx�kk22

 (1+ 4e)kx�kk22

Finally, we can conclude a = 5 and b = 100.

1.3.4 Time, measurements, column sparsity, and probability

In this section, we will bound the decoding time, the number of measurements, column

sparsity and success probability of algorithm.
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Decoding time. For each i 2 L, we compute zi to be the median of R values. For this part,

we spend O(|L| · R) = O((k/e) · log(1/e)) time. Moreover, calculating the top bk estimates

in L only takes O(|L|) time. Therefore, the decoding time is O((k/e) · log(1/e)).

The number of measurements. The number of measurements is the bucket size B times

the number of repetitions R, which is O(BR) = O((k/e) · log(1/e)).

Column sparsity. Each i 2 [n] goes to one bucket for each hash function, and we repeat R

times, so the column sparsity is O(R) = O(log(1/e)).

Success probability. By analysis in Section 1.3.3, the success probability is at least 0.98.

1.4 Tail Estimation

In Section 1.4.1, we present a standard result on random walks. In Section 1.4.2, we present

some results on p-stable distribution. In what follows we asssume that 0 < p  2. We show

an algorithm for `p tail estimation in Section 1.4.3.

1.4.1 Random walks

Theorem 1.4.1. We consider the following random walk. We go right if Bi = 1 and we go left if

Bi = 0. The probability of Bi = 1 is at least 9/10 and the probability of Bi = 0 is at most 1/10.

With at least some constant probability bounded away from 1
2 , for all the possible length of the random

walk, it will never return to the origin.

This is a standard claim, that can be proved in numerous ways, such as martingales etc.

For the completeness, we still provide a folklore proof here.

Proof. Let p > 1/2 be the probability of stepping to the right, and let q = 1� p. For integer

m � 1, let Pm be the probability of first hitting 0 in exactly m steps. It is obvious that Pm = 0

if n is even, and P1 = q. In order to hit 0 for the first time on the third step you must

Right-Left-Left, so P3 = pq2. To hit 0 for the first time in exactly 2k+ 1 steps, you must go

54



right k times and left k+ 1 times, your last step must be to the left, and through the first 2k

steps you must always have made at least many right steps as left steps. It is well known

that the number o such path is Ck, which is the k-th Catalan number. Thus,

P2k+1 = Ckqkqk+1
= Ck · q(pq)k =

q(pq)k

k+ 1

✓

2k
k

◆

,

since

Ck =
1

k+ 1

✓

2k
k

◆

By [Wil05], the generating function for the Catalan numbers is

c(x) = Â
k�0

Ckxk =
1�

p
1� 4x
2x

,

so the probability that the random walk will hit 0 is

Â
k�0

P2k+1 = q Â
k�0

Ck(pq)k

= q · c(pq)

= q · 1�
p

1� 4pq
2pq

by definition of c(x)

=

1�
p

1� 4q(1� q)
2p

=

1�
p

1� 4q+ 4q2

2p

=

1� (1� 2q)
2p

= q/p

 1/9.

Thus, we complete the proof.

1.4.2 p-stable distributions

We first provide the definition of p-stable distribution. For the more details, we refer the

readers to [Ind06].
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Figure 1.1: This is a visualization of part of the proof in Claim 1.4.8. We consider an example where there
are l = 10 blocks, B1 = 1, B2 = 1, B1 = 1, B3 = 0, B4 = 0, B5 = 1, B6 = 1, B7 = 0, B8 = 0, B9 = 1
and B10 = 0. Recall the two important conditions in the proof of Claim 1.4.8, the first one is B1 = 1 and
the second one is, for all j 2 [l],Âj

j0=2 Bj0 > (j� 1)/2. The number on the green arrow is Âj
j0=2 Bj0 . It is to

see that the example we provided here is satisfying those two conditions. Recall the definition of set S1 and
S0. Here S1 = {2, 3, 5, 6, 9} and S0 = {4, 7, 8, 10}. Then S01 = {2, 3, 5, 6}. The mapping p satisfies that
p(4) = 2, p(7) = 3, p(8) = 5 and p(10) = 6.

Definition 1.4.2 (p-stable distribution). A distribution D over R is called p-stable, if there exists

p � 0 such that for any n real numbers a1, a2, · · · , an and i.i.d. variables x1, x2, · · · , xn from

distribution D, the random variable Ân
i=1 aixi has the same distribution as the variable kakpy, where

y is a random variable from distribution D.

Theorem 1.4.3 ([Zol86]). For any p 2 (0, 2], there exists a p-stable distribution.

Gaussian distribution defined by the density function f (x) =

1p
2p

e�x2/2, is 2-stable.

Cauchy distribution defined by density function f (x) = 1
p

1
1+x2 is 1-stable. Let Dp denote

the p-stable distribution. For p = 2, Dp is N (0, 1) and for p = 1, Dp is C(0, 1).

1.4.3 `p-tail estimation algorithm

The goal of this Section is prove Lemma 1.4.4.

One can try to prove such a claim for p = 2 with random signs, instead of Gaussians,

by applying the Paley-Zygmund inequality to obtain the lower bound. A straightforward
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Algorithm 3 `p tail estimation algorithm

1: procedure LpLpTailEstimation(x, k, p,C0, d) . Lemma 1.4.4
2: . Requires C0 � 1000
3: m  O(log(1/d))

4: Choose gi,t to be random variable that sampled i.i.d. from distribution Dp, 8i, t 2
[n]⇥ [m]

5: Choose di,t to be Bernoulli random variable with E[di,t] = 1/(100k), 8i, t 2 [n]⇥ [m]

6: . Matrix A is implicitly constructed based on gi,t and di,t
7: for t 2 [m] do
8: yt  Ân

i=1 di,t · gi,t · xi
9: end for
10: V  mediant2[m]

|yt|2
11: return V . 1

10kkx�C0kk
p
p  V  1

kkx�kkpp
12: end procedure

calculation indicates that this approach does not give the desired result, hence we need a

new argument to deal with the lower bound.

Lemma 1.4.4 (Restatement of Lemma 1.1.5). Let C0 � 1000 denote some fixed constant. There

is an oblivious construction of matrix A 2 Rm⇥n with m = O(log(1/d)) along with a decoding

procedure LpLpTailEstimation(x, k, p,C0, d) (Algorithm 3) such that, given Ax, it is possible to

output a value V in time O(m) such that

1
10k

kx�C0kk
p
p  V  1

k
kx�kkpp,

holds with probability 1� d.

Proof. Let m = O(log(1/d)). For each i 2 [n], t 2 [m], we use gi,t to denote a random

variable that sample from distribution Dp.

For each i 2 [n], t 2 [m], we use di,t to denote a Bernoulli random variable such that

di,t =

8

>

>

<

>

>

:

1, with prob. 1
100k ;

0, otherwise.

Then we have

E[di,t] =
1

100k
.
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For each t 2 [m], we define yt as follows

yt =
n

Â
i=1

di,tgi,txi. (1.11)

For each t 2 [m], we define Dt as follows

Dt =

 

n

Â
i=1

d

p
i,tx

p
i

!1/p

. (1.12)

Using Claim 1.4.5 and Claim 1.4.8

Pr
g,d



|yt| < a

1
(2C0k)1/p

kx�C0kkp
�

 1/5.

Using Claim 1.4.6 and Claim 1.4.7

Pr
g,d



|yt| > b

1
k1/p

kx�kkp
�

 1/5.

Finally, we just take the median over m different independent repeats. Since m =

O(log(1/d)), thus, we can boost the failure probability to d.

It is a standard fact, due to p-stability, that yt follows the p-stable distribution : Dt · Dp.

Since p-stable distributions are continuous functions, we have the following two Claims:

Claim 1.4.5 (upper bound on |yt|). Let yt be defined in Eq. (1.11), let Dt be defined in Eq. (1.12).

There is some sufficiently small constant a 2 (0, 1) such that

Pr
g
[|yt| < a · Dt]  1/10.

Claim 1.4.6 (lower bound on |yt|). Let yt be defined in Eq. (1.11), let Dt be defined in Eq. (1.12).

There is some sufficiently large constant b > 1 such that

Pr
g
[|yt| > b · Dt]  1/10.

It remains to prove Claim 1.4.7 and Claim 1.4.8.
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Claim 1.4.7 (lower bound on Dt). Let Dt be defined in Eq. (1.12). Then we have

Pr
d



Dt >
1

k1/p
kx�kkp

�

 1/10.

Proof. The proof mainly includes three steps,

First, for a fixed coordinate i 2 [n], with probability at most 1/(100k), it got sampled.

Taking a union bound over all k largest coordinates. We can show that with probability at

least 1� 1/100, none of k largest coordinates is sampled. Let x be that event.

Second, conditioning on event x, we can show that

E[Dt] 
1

(100k)1/p
kx�kkp.

Third, applying Markov’s inequality, we have

Pr[Dt � a]  E[Dt]/a.

Choosing a = 1
k1/p kx�kkp, we have

Pr


Dt �
1

k1/p
kx�kkp

�

 1/10.

Claim 1.4.8 (upper bound on Dt). Let Dt be defined in Eq. (1.12). For any C0 � 1000, we have

Pr
d



Dt <
1

(2C0k)1/p
kx�C0kkp

�

 1/10.

Proof. Without loss of generality, we can assume that all coordinates of xi are sorted, i.e.

x1 � x2 � · · · � xn. Then we split length n vector into l blocks where each block has length

s = C0k. Note that it is obvious l · s = n.

For each j 2 [l], we use boolean variable Bj to denote that if at least one coordinate in

j-th block has been sampled. For a fixed block j 2 [l], the probability of sampling at least

one coordinate from that block is at least

1�
✓

1� 1
100k

◆s
= 1�

✓

1� 1
100k

◆C0k
� 9/10.
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Thus, we know 1 � E[Bj] � 9/10.

Warm-up. Note the probability is not allowed to take a union over all the blocks.

However, if we conditioned on that each block has been sampled at least one coordinate,

then we have

Dp
t =

n

Â
i=1

di,tx
p
i

�
l�1

Â
j=1

xpjs

�
l�1

Â
j=1

1
s

⇣

xpjs+1 + xpjs+2 + · · ·+ xpjs+s

⌘

=

1
s
kxskpp.

Fixed. For simplicity, for each j 2 [l], we use set Tj to denote {(j� 1)s+ 1, (j� 1)s+

2, · · · , (j� 1)s+ s}.

Using random walk Lemma 1.4.1, with probability at least 99/100, we have : for all

j 2 {2, · · · , l},

j

Â
j0=2

Bj0 > (j� 1)/2.

We know that with probability at least 99/100, B1 = 1. Then with probability at least 99/100,

we have

B1 = 1, and
j

Â
j0=2

Bj0 > (j� 1)/2, 8j 2 [l].

We conditioned on the above event holds. Let set S1 ⇢ [n] denote the set of indices j such

that Bj = 1, i.e.,

S1 =
�

j
�

� Bj = 1, j 2 [n]\{1}
 

.

Let set S0 ⇢ [n] denote the set of indices j such that Bj = 0, i.e.,

S0 =
�

j
�

� Bj = 0, j 2 [n]\{1}
 

.
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Due to Âj
j0=2 Bj0 > (j � 1)/2, 8j 2 [l], then it is easy to see S1 > S0 and there exists a

one-to-one mapping p : S0 ! S01 where S01 ✓ S1 such that for each coordinate j 2 S0,

p(j) < j. Since we are the coordinates are being sorted already, thus

Â
j2S1

kxTjk
p
p = Â

j2S01
kxTjk

p
p

= Â
j2S01

kxT
p

�1
(j)
kpp

� Â
j2S0

kxTjk
p
p

which implies that

Dp
t =

n

Â
i=1

d

p
i x

p
i = Â

j2S1
kxTjk

p
p �

1
2s
kx�skpp.

Thus, with probability at least 9/10, we have

Dt �
1

(2s)1/p
kx�skp.
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Chapter 2

Non-Linear Compressed Sensing

2.1 Compressed Sensing from Intensity-Only Measurements

2.1.1 Results

In this section we give an overview of the sublinear-time results which we have obtained for

the sparse recovery problem with phaseless measurements.

First, we consider the case of noiseless signals. Similar to the classical sparse recovery

where O(k) measurements suffice for noiseless signals by Prony’s method [Pro95], it is

known that O(k) phaseless measurements also suffice for exact recovery (up to rotation)

and the decoding algorithm runs in time O(k log k) [CBJC14]. Their algorithm is based on a

multi-phase traversal of a bipartite random graph in a way such that all magnitudes and all

phases are recovered by resolving multi-tons. We prove a result with the same guarantee,

but our algorithm takes a different route using more basic tools and being less technically

demanding. Apart from being significantly simpler, it also can be modified so that it trades

the decoding time with the failure probability; see Remark 2.1.19.

Theorem 2.1.1 (noiseless signals). There exists a randomized construction of F 2 Cm⇥n and a

deterministic decoding procedure R such that bx = R(F, |Fx|) satisfies that bx = ei·qx for some

q 2 [0, 2p) with probability at least 1� 1/ poly(k), where F has m = O(k) measurements and R

runs in time O(k log k).
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The next results refer to approximately sparse signals and improve upon the previous

ones with various degrees. For the `•/`2 problem our result, stated below, improves upon

[Nak17a] in terms of the error guarantee and the decoding time. It requires a modest

assumption on the pattern of the valid phases of the heavy hitters as defined below, which

is often satisfied in applications where the valid phases lie in a set of equidistant points on

S1. Throughout this subchapter we identify S1 with [0, 2p) and assume both the unoriented

distance d(·, ·) and the oriented distance ~d(·, ·) on S1 are circular. We shall also use [m] to

denote the set {1, . . . ,m} for any positive integer m, a conventional notation in computer

science literature.

Definition 2.1.2 (h-distinctness). Let P = {p1, . . . , pm} be a finite set on S1. We say P is h-

distinct if the following conditions hold: First, d(pi, pj) � h for all distinct i, j 2 [m]; and it holds

for every pair of distinct i, j 2 [m] that

max
`2[m]

d(x` + xj � xi, P) 2 {0} [ [h,p].

Intuitively, (i) means that the phases are at least h apart from each other, and (ii) means

that if we rotate the set P of the valid phases to another set P0 such that some valid phase

coincides with another one (in the expression above xi is rotated to the position of xj), then

either P = P0 or there exists an additive gap of at least h around some phase. This precludes

the case where P is approximately, but not exactly, equidistant.

Definition 2.1.3 (head). Let x 2 Cn. Define Hk(x) to be (a fixed choice of) the index set of the k

largest coordinates of x in magnitude, breaking ties arbitrarily.

Definition 2.1.4 (e-heavy hitters). Let x 2 Cn. We say xi is an e-heavy hitter if |xi|2 �

ekx�1/e

k22.

Definition 2.1.5 (phase-compliant signals). Let x 2 Cn. Let P ✓ S1 be a set of possible phases and

T be the set of all (1/k)-heavy hitters in T. We say that x is (k, P)-compliant if {i 2 T : arg xi} ✓ P.

Theorem 2.1.6 (`•/`2 with optimal measurements). There exists a randomized construction

of F 2 Cm⇥n and a deterministic decoding procedure R such that for x 2 Cn which is (O(k), P)-
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compliant for some h-distinct P ⇢ S1, the recovered signal bx = R(F, |Fx|, P) satisfies the `•/`2

error guarantee with probability at least 0.6, and F has m = O((k/h) log n) rows and R runs in

time O(k/h + k poly(log n)).

It is clear that the lower bound for the traditional compressive sensing problem is also a

lower bound for the compressive phase retrieval problem, and it is known that the `•/`2

compressive sensing problem requires W(k log n) measurements [DBIPW10]. Therefore the

theorem above achieves the optimal measurements constant h up to a constant factor.

An immediate corollary of the `•/`2 sparse recovery algorithm is an `2/`2 sparse

recovery algorithm, stated below, which improves upon [Nak17a] in approximation ratio

(from a constant factor to 1+ e) and decoding time but allows a constant failure probability

instead of an on(1) failure probability as in [Nak17a].

Corollary 2.1.7 (`2/`2 with near-optimal measurements). There exists a randomized construc-

tion of F 2 Rm⇥n and a deterministic decoding procedure R such that for x 2 Cn which is

(O(k), P)-compliant for some h-distinct P ⇢ S1, the recovered signal bx = R(F, |Fx|, P) satisfies

the `2/`2 error guarantee with probability at least 0.6, and F has m = O((k/min{h, e}) log n)

rows and R runs in time O((k/min{h, e})poly(log n)).

It is also known that the classical compressive sensing problem with for-each `2/`2

error guarantee and constant failure probability requires W((k/e) log(n/k)) measure-

ments [PW11]. Our result above achieves the optimal number of measurements up to

a logarithmic factor.

For the `2/`2 error guarantee with 1/ poly(n) failure probability, we shall increase the

number of measurements to O(k/e

2 · log n), as in the following theorem. This improves

on [Nak17a] in terms of the approximation ratio, the failure probability and most importantly

the decoding time. We note that the best decoding time of the existing algorithms is

O(k1+o(1) poly(log n)). However, we restrict the set P of valid phases to an equidistant set

with gap at least h, that is, up to a rotation, P = {e2pi j
m }j=0,...,m�1 for some m  2p/h.

Theorem 2.1.8 (`2/`2 with low failure probability). There exists a randomized construction

of F 2 Rm⇥n and a deterministic decoding procedure R such that for each x 2 Cn which is
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(O(k/e), P)-compliant for some P ⇢ S1 that is equidistant with gap at least h, the recovered signal

bx = R(F, |Fx|, P) satisfies the `2/`2 error guarantee with probability at least 1� d, and F has

m = O((eh)

�2k log(n/d)) rows and R runs in time O((eh)

�2k poly(log(n/d))).

We note that the number of measurements becomes O(e

�2k log n) when h is a constant

and the failure probability d = 1/ poly(n), which is usually the case.

2.1.2 Toolkit

Theorem 2.1.9 (Bernstein’s inequality, [DP09, p9]). Let X1,X2, . . . ,Xn be i.i.d. random variables

with Xi � EXi  K and s

2
= Ân

i=1 EX2
i � (EXi)

2. Then

Pr

(

n

Â
i=1

Xi � E
n

Â
i=1

Xi � l

)

 exp

 

�
1
2l

2

s

2
+

1
3Kl

!

.

The two results concern heavy hitters, one for estimating the value of a heavy hitter and

the other for finding the positions of the heavy hitters.

Theorem 2.1.10 (Count-Sketch, [CCF02]). There exist a randomized construction of a matrix

F 2 Rm⇥n with m = O(K log n) and a deterministic algorithm R such that given y = |Fx| for

x 2 Cn, with probability at least 1� 1/ poly(n), for every i 2 [n], the algorithm R returns in time

O(log n) an estimate |bxi| such that

||xi|� |bxi||2 
1
K
kx�Kk22.

Theorem 2.1.11 (Heavy hitters, [LNNT16]). There exist a randomized construction of a matrix

F 2 Rm⇥n with m = O(K log n) and a deterministic algorithm R such that given y = |Fx| for

x 2 Cn, with probability at least 1� 1/ poly(n) the algorithmR returns in timeO(K ·poly(log n))

a set S of size O(K) containing all (1/K)-heavy hitters of x.

We remark that the paper [LNNT16] does not consider complex signals but the extension

to complex signals is straightforward. The algorithm is not designed for the phaseless sparse

recovery either, the identification algorithm nevertheless works when the measurements

are phaseless because it only relies on the magnitudes of the bucket measurements; see
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Theorem 2 and Section B in [LNNT16]. Estimating the values of the candidate coordinates

requires knowing the phases of the measurements but our theorem above does not concern

this part.

Theorem 2.1.12 ([ER59]). Let V be a set of n vertices. There exists an absolute constant k such that

kn log n uniform samples of pairs of distinct vertices in V induce a connected graph with probability

at least 1� 1/ poly(n).

Theorem 2.1.13 (Phase Prediction, [TMB+17]). Let V be a set of size n and p : V ! S1 be the

phase function of the elements in V. A query returns a random pair {u, v} 2 V ⇥V uniformly at

random, along with an estimate of the oriented distance ~d(p(u),p(v)), which could be incorrect

with probability 1/3. There exists an absolute constant c
sp

such that c
sp

n log n queries suffice to find

the relative phase differences for all u 2 V with probability 1� 1/ poly(n) in time O(n2 log n).

We remark that the paper [TMB+17] concerns only the sign prediction for real signals,

i.e., p : S ! {�1, 1}, and can be straightforwardly generalized, with minimum changes, to

the setting in the theorem statement above. The runtime in [TMB+17] is O(n3 log n) since

for each pair (u, v) it runs a sign prediction algorithm in O(n log n) time to determine the

sign difference between u and v (correct with high probability) and enumerate all Q(n2)

pairs. This is unnecessary, as we can fix u and enumerate v so we run the sign prediction

algorithm just O(n) times.

The following lemmata will be crucial in the analysis of our algorithms.

Lemma 2.1.14. Suppose that x, y, n1, n2, n3 2 C such that |n1|, |n2|, |n3|  emin{|x|, |y|} for

some e  1/9. Denote by q be the phase difference between x and y. Then given the norms

|x+ n1|, |y+ n2|, |x+ y+ n1 + n2 + n3|,

we can recover q up to an additive error of c0
p

e. Furthermore, if q 2 (ce,p � ce) we can recover q

up to an additive error of ce.

Proof. If we know |x|, |y| and |x+ y|, it follows from the Law of Cosines that

cos(p � q) =

|x|2 + |y|2 � |x+ y|2
2|x| · |y| =

�<xy
|x| · |y| .

66



Let x0 = x+ n1 and y0 = y+ n2 then x+ y+ n1 + n2 + n3 = x0 + y0 + n3. Suppose the phase

difference between x0 and y0 is q

0, then we would pretend x0 + y0 + n3 to be x0 + y0 and

obtain an approximation q

00 to q

0 as

cos(p � q

00
) =

|x0|2 + |y0|2 � |x0 + y0 + n3|2
2|x0| · |y0| =

�<x0y�<x0n3 �<yn3 � |n3|2
|x0| · |y0| .

Hence

| cos(p � q

00
)� cos(p � q

0
)|  |x0||n3|+ |y0||n3|+ |n3|2

|x0| · |y0|  e + e + 9e

2  3e.

Similarly we have

cos(p � q

0
) = cos(p � q) · |x|

|x+ n1|
· |y|
|y+ n2|

+ n, |n|  c1e,

and thus

cos(p � q

0
)� cos(p � q) = cos q

✓ |x|
|x+ n1|

· |y|
|y+ n2|

� 1
◆

+ n.

Note that |x|
|x+n1| ,

|y|
|y+n2| 2 [

1
1+e

, 1
1�e

], it follows that

| cos(p � q

0
)� cos(p � q)|  c2e

and thus

| cos(p � q

00
)� cos(p � q)|  c3e.

Therefore there exists c0 such that |q � q

0|  c0
p

e; and furthermore, there exists c such that

when q 2 (ce,p � ce), it holds that

|q00 � q|  ce.

Lemma 2.1.15. Let x, y, n1, n3, e be as in Lemma 2.1.14. Suppose that arg y = arg x+ q for some

q 2 (0, 2p), where addition is modulo 2p. Given the norms

|x+ n1|, |y|, |x+ y+ n1 + n3|, |x+ by+ n1 + n3| , b = e2cei,

we can recover q up to an additive error of ce, provided that q 2 (2ce,p � 2ce) [ (p + 2ce, 2p �

2ce).
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Proof. By Lemma 2.1.14, we can recover |q| up to an additive error of ce when |q| 2

(ce,p � ce). To determine the sign, we rotate y by angle 2ce and test the angle between x

and this rotated y again by Lemma 2.1.14. Suppose that the angle between x and by is f

and we have an estimate of |f| up to an additive error of ce, provided that |f| 2 (ce,p � ce),

which means that |q| 2 (2ce,p � 2ce). It holds that

|f|� |q| =

8

>

>

<

>

>

:

�2ce, q > 0;

2ce, q < 0.

when |q| 2 (2ce,p � 2ce). The left-hand side is approximated up to an additive error of 2ce

and thus we can distinguish the two cases.

Lemma 2.1.16 (relative phase estimate). Let x, y, n1, n3, e be as in Lemma 2.1.14 and further

assume that ce  p/9. Suppose that arg y = arg x+ q for some q 2 (0, 2p), where addition is

modulo 2p. Given the norms

|x+ n1|, |y|, |x+ ei(2cej+
p

2 `)y+ n1 + n3|, j, ` = 0, 1

we can recover q up to an additive error of ce.

Proof. From Lemma 2.1.15, we know that we can recover q up to an additive error of ce

when q 2 I, where I = (2ce,p � 2ce) [ (p + 2ce, 2pi� 2ce). We accept the estimate if the

estimate is in the range of I0 := (3ce,p � 3ce) [ (p + 3ce, 2pi� 3ce).

Consider the phase difference between x and eip/2y and suppose that arg(eip/2y) =

arg x+ f, then we can recover f up to an additive error of ce for f 2 I, that is, for q 2 J :=

(p/2+ 2ce, 3p/2� 2ce)[ (�p/2+ 2ce,p/2� 2ce), which is I rotated by p/2. We accept the

estimate when it is in the range of J0 := (p/2+ 3ce, 3p/2� 3ce)[ (�p/2+ 3ce,p/2� 3ce).

Note that I0 [ J0 covers the whole S1 when ce < p/8.

2.1.3 Noiseless Signals

We shall need the following theorem from [Nak17a], which shows that one can recover an

exactly K-sparse signal up to a global phase using O(K) measurements and in time O(K2
).
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The runtime was not claimed in [Nak17a] but is easy to analyse.

Theorem 2.1.17 ([Nak17a]). Let L be a 2K⇥ 2K lower triangular matrix with each non-zero entry

being 1, and A be the vertical concatenation of L and I2k⇥2k. Let F2K be the first 2K rows of a Discrete

Fourier Transform matrix. For x 2 Cn such that kxk0  K, given y = |AF2Kx|, we can recover x

up to a rotation in time O(K2
).

We are now ready to prove Theorem 2.1.1, which we restate below.

Theorem 2.1.18 (noiseless signals). here exists a randomized construction of F 2 Cm⇥n and a

deterministic decoding procedure R such that bx = R(F, |Fx|) satisfies that bx = ei·qx for some

q 2 [0, 2p) with probability at least 1� 1/ poly(k), where F has m = O(k) measurements and R

runs in time O(k log k).

Proof. Let B = k/(c log k) and h : [n] ! [B] be an O(k)-wise independent hash function,

where c is a constant. We hash all n coordinates into B buckets using h. It is a typical

application of Chernoff bound that the buckets have small size (see Lemma 2.1.28), more

specifically,

Pr
n

9j 2 [B] : |h�1
(j) \ supp(x)| > 5 log k

o

 1
poly(k)

.

In each bucket we run the algorithm of Theorem 2.1.17 with K = 5 log k. The number of

measurements used for each bucket is Q(log k). For each j 2 [B], we can find xh�1
(j) up to a

global phase, so it remains to find the relative phases across different xh�1
(j).

Let F1, . . . , Flog k be independent random 0/1 matrices of n columns, where F` has acR2`

rows for ` > d 12 log ke + 1 and acR2` log k rows otherwise, and a is a sufficiently large

constant. Each entry in F` equals to 1 with probability 2�`, that is, E[(F`)i,j] = 2�`. Our

measurement matrix is the vertical concatenation of F1, . . . , Flog k. The total number of

measurements is

k
c log k

· Q(log k) + Â
`>d 1

2 log ke
acR2` + Â

`d 1
2 log ke

acR log k · 2` = O(k)

as desired. Next we show the correctness.

69



We set supp(x) =
SB

j=1 supp(xh�1
(j)) and compute ` such that 2`�1  | supp(x)|  2`.

Now, consider the rows of F`. Denote the j-th row of F` by (F`)j. Define a row index set J to

be

J =
�

j :
�

�supp((F`)j) \ supp(x)
�

�

= 2
 

.

Observe that each j is contained in J with constant probability and we focus on the mea-

surements corresponds to the rows in J. From such a measurement we can obtain a random

pair {u, v} ✓ supp(x) and, moreover, (h(u), h(v)) is uniformly random on [B]⇥ [B]. We

also obtain |xu + xv| and, because we also know |xu|, |xv|, we can infer the relative phase

between xu, xv. The relative phases we obtain are always correct since the signal is noiseless.

Let M be the ordered set of such pairs (u, v) along with the label that we obtain about the

relative phase between u and v. We split M into equal-sized sets of edges M1,M2, . . . ,

each of size cR`2`. In each Mj we run a depth-first search to infer the relative phases. If the

graph is connected, which happens with probability 1� 2�`, we will find all the relative

phases correctly. We take the pattern of relative phases that appears most often. It follows

from standard Chernoff bounds and our choice of parameters for F` that the overall failure

probability is at most 1/ poly(k).

Remark 2.1.19. Note that if we hash to k1�a buckets, solve in each bucket and then combine the

buckets, we can obtain a failure probability at most exp(�ka

) and a running time of O(k1+a

). This

is a trade-off between decoding time and failure probability that the previous algorithms did not

achieve.

Remark 2.1.20. We show how to implement efficiently the routine which finds the set of rows of F

whose support intersect supp(x) at 2 coordinates. For ` > d 12 log ke the expected number of rows of

F` containing an index i 2 supp(x) is 2�`
acR2` = acR. So the probability that there are more than

2acR2` pairs (i, q) such that i 2 supp(x) \ supp(F`)q is exp(�W(2`)) < 1/ poly(k). A similar

result can be obtained for ` < 1
2 log k. Suppose that F` is stored using n lists of nonzero coordinates

in each column, we can afford to iterate over all such pairs (i, q), keep an array C[q] that holds the

cardinality of supp(x) \ supp((F`)q). At the end, we find the values of q with C[q] = 2. This
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implementation makes the algorithm run in O(k log k) time.

2.1.4 `•/`2 Algorithm

In this section, we set c to be the constant in Lemma 2.1.16 and e = min{h/(5c),p/(9c)}.

Let P ✓ S1 be h-distinct and suppose that it contains the phases of all 1/( eCk)-heavy hitters

for some (large) constant eC.

We first describe our construction of the measurement matrix F and then present the

analysis and the recovery algorithm. Let R = cR log n for some constant cR to be determined.

The overall sensing matrix F is a layered one as

F =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

FHH

FCS

r

F1
...

FR

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Here

• FHH is the sensing matrix in Theorem 2.1.11 with K = k.

• FCS is the sensing matrix of Count-Sketch with K = Ck/e.

• r is a row vector

r =

✓

h1g1 h2g2 · · · hngn

◆

,

where hi are i.i.d. Bernoulli variables with E hi = 1/(C0k) and gi are i.i.d. N (0, 1)

variables.

• Each Fr (r 2 [R]) is a matrix of 4B rows defined as follows, where B = cBk/e. Let

hr : [n] ! [B] be a pairwise independent hash function and {sr,i}ni=1 be pairwise
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Algorithm 4 Algorithm for the `•/`2 phaseless sparse recovery. Assume that the elements
in P are sorted.
1: S  the set returned by the algorithm in Theorem 2.1.11 with K = k
2: Run a Count-Sketch algorithm with K = Ck/e to obtain an approximation |bxi| to |xi|

for all i 2 S
3: L  |Ân

i=1 higixi|
4: S0  {i 2 S : |bxi| � L}
5: if L = 0 then
6: Run the algorithm for the noiseless case with sparsity C2k
7: else
8: for each r 2 [R] do
9: bi  hr(i) for all i 2 S0
10: for each i 2 S0 with distinct bi do
11: e

qr,i  estimate of phase difference between xi and hr, xi using Lemma 2.1.16
12: for each i 2 S0 do
13: e

qi  medianr2[R] eqr,i

14: Choose an arbitrary i0 2 S0
15: for each p 2 P do
16: q

0
i0  p

17: q

0
i  q

0
i0 +

e

qi � e

qi0 for all i 2 S0 \ {i0}
18: if d(q0i , P)  h/2 for all i 2 S0 then
19: return bx supported on S0 with arg bxi = qi
20: end if
21: end if

independent random signs. Define a B⇥ n hashing matrix Hr as

(Hr)j,i =

8

>

>

<

>

>

:

(1� hi)sr,i, i 2 h�1
r (j);

0, otherwise.

The 4B rows of Fr are defined to be

ei(2ce`1+
p

2 `2)
r + (Hr)b,·, `1, `2 = 0, 1, b = 1, . . . , B.

We present the recovery algorithm in Algorithm 4, where we assume that the set P of

valid phases has been sorted. In the following we analyse the algorithm in four steps.
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Step 1 By Theorem 2.1.11, the set S has size O(k) and, with probability 1� 1/ poly(n),

contains all (1/k)-heavy hitters. The Count-Sketch (Theorem 2.1.10) guarantees that

||xi|� |bxi||2 
e

Ck
kx�kk22 (2.1)

for all i 2 S with probability at least 1� 1/ poly(n).

Step 2 We shall see that L, calculated in Line 3, ‘approximates’ the desirable tail 1
kkx�kk22.

First we upper bound L. Decompose x into real and imaginary parts as x = y+ iz with

y, z 2 Rn and consider L1 = Âi higiyi and L2 = Âi higizi. Note that L2 = L21 + L22.

Choosing C0 � 200, we have

Pr {hi = 0 for all i 2 Hk(y) [ Hk(z)} � 0.99 (2.2)

Condition on this event below. Note that L1 ⇠ N (0, |Âi hiyi|22), and

Pr

8

<

:

L21 � 2.2822
�

�

�

�

�

Â
i

hiyi

�

�

�

�

�

2

2

9

=

;

 2F(�2.282)  0.0225.

On the other hand, E |Âi hiyi|2 = Âi(E hi)y2i  ky�kk22/(C0k) thus

Pr

8

<

:

�

�

�

�

�

Â
i

hiyi

�

�

�

�

�

2

� 20
C0k

kx�kk22

9

=

;

 0.05,

and hence

Pr
⇢

L21 �
105
C0k

ky�kk22
�

 0.0725.

Similarly we have

Pr
⇢

L22 �
105
C0k

kz�kk22
�

 0.0725.

Therefore, taking a union bound of both events above and noting that ky�kk22 + kz�kk22 

kx�kk22, we have that

Pr
⇢

L2 � 105
C0k

kx�kk22
�

 0.145. (2.3)

We therefore obtained an upper bound of L. The next lemma lower bounds L.
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Lemma 2.1.21. With probability at least 0.8, it holds that L2 � 1
C1kkx�C2kk22, where C1,C2 are

absolute constants.

Proof. Decompose x into real and imaginary parts as x = y+ iz with y, z 2 Rn. Consider

L1 = Âi higiyi and L2 = Âi higizi, which are both real. Note that L2 = L21 + L22.

First consider L1. We sort coordinates [n] \ Hk(y) by decreasing order of magnitude.

Then, we split the sorted coordinates into continuous blocks of size C0
2k and let Sj denote the

j-th block. Let dj be the indicator variable of the event that there exists i 2 Sj such that hi = 1,

then dj’s are i.i.d. Bernoulli variables with E dj = 1� (1� 1/(C0k))C
0
2k � 1� exp(�C0

2/C0),

which can be made arbitrary small by choosing C0
2 big enough. It is a standard result in

random walks (see, e.g., [KT75, p67]) that when E dj is small enough, with probability at

least 0.95, every partial prefix of the 0/1 sequence (d1, d2, d3, . . .) will have more 1s than

0s. Call this event E . In fact, one can directly calculate that Pr(E) = 1� (1� p)2/p when

p := E dj � 1/2, and thus one can take C0
2 = d1.61C0e such that Pr(E) � 0.95.

Condition on E . We can then define an injective function p from {j : dj = 0} to

{j : dj = 1}. Specifically, we define p(j) = `, where dj is the k-th 0 in the sequence and ` is

the k-th 1 in the sequence. Clearly that p is injective, p(j) < j and d

p(j) = 1. It follows that

Â
i2[n]

hi|yi|2 � Â
j

djkSj+1k2• � Â
j:dj=1

1
C0
2k
kSj+1k22

� 1
2 Â

j:dj=1

1
C0
2k
kSj+1k22 +

1
2 Â

j:dj=1
p

�1
(j) exists

1
C0
2k
kS

p

�1
(j)k22

� 1
2 Â

j:dj=1

1
C0
2k
kSj+1k22 +

1
2 Â

j:dj=0

1
C0
2k
kSjk22

� 1
2C0

2k
ky�C0

2kk
2
2.

This implies that L1 = Âi higiyi with probability at least 0.95 will stochastically dominate a

gaussian variable N (0, 1
2C2kky�C2kk22). Combining with the fact that Prg⇠N (0,1){|g|  1

16} 

0.05, we see that

Pr
⇢

L21 �
1

162 · 2C0
2k
ky�C0

2kk
2
2

�

� 0.9.

74



Similarly for the imaginary part z and L2,

Pr
⇢

L22 �
1

162 · 2C0
2k
kz�C0

2kk
2
2

�

� 0.9.

Condition on that both events above happen. For notational convenience, let T1 = HC0
2k(y)

and T2 = HC0
2k(z), then

L2 = L21 + L22 �
1

162 · 2C0
2k
(kyTc

1
k22 + kzTc

2
k22)

� 1
162 · 2C0

2k
ky

(T1[T2)ck
2
2 + kz

(T1[T2)ck
2
2)

=

1
162 · 2C0

2k
kx

(T1[T2)ck
2
2

� 1
162 · 2C0

2k
kx�2C0

2kk
2
2.

Therefore, we can take C2 = 2C0
2 above and C1 = 162C2.

Combining (2.2), (2.3) and Lemma 2.1.21 and taking C0 = 210, we conclude that with

probability at least 1� 0.365,

1
C1k

kx�C2kk22  L2  1
2k

kx�kk22. (2.4)

Step 3 We now show that the trimmed set S0 is good in the sense that its elements are not

too small and it contains all (1/k)-heavy hitters. This is formalized in the following lemma.

Lemma 2.1.22. With probability at least 0.63, it holds that

(i) |xi|2 � 1
2C1kkx�C2kk22 for all i 2 S0; and

(ii) S0 contains all coordinates i such that |xi|2 � 1
kkx�kk22.

Proof. The events (2.1) and (2.4) happen simultaneously with probability at least 1� 0.365�

1/ poly(n) � 1� 0.37. Condition on both events. Let C =

p
2p

2�1
C1, then

(i) for i 2 S0, it holds that |xi| � L� 1p
Ck
kx�C2kk2 � 1p

2C1k
kx�C2kk2;

(ii) if |xi|2 � 1
kkx�kk22, then |bxi| � 1p

k
kx�kk2 � 1p

Ck
kx�kk2 � L.
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Step 4 The rest of the algorithm is devoted to finding the relative phases among i 2 S0.

We have from our construction the measurements
�

�

�

�

�

�

ei(2ce`1+
p

2 `2)
n

Â
i=1

higixi + Â
i2h�1

r (j)

(1� hi)si,rxi

�

�

�

�

�

�

, `1, `2 = 0, 1, j 2 [B], r 2 [R].

We note that Line 11 in the algorithm is valid because we have access to

|bxi| ,
�

�

�

�

�

n

Â
i=1

higixi

�

�

�

�

�

,

�

�

�

�

�

�

bxi + ei(2ce`1+
p

2 `2)
n

Â
i=1

higixi + Â
i02h�1

r (hr(i))\S0
(1� hi0)si0,rxi0

�

�

�

�

�

�

.

The analysis of this step directly leads to a proof of Theorem 2.1.6, which we show

below.

Proof of Theorem 2.1.6. First we condition on the success of Lemma 2.1.22, which hold with

probability at least 1� 0.37.

Fix an i 2 S0. For r 2 [R], the probability that it is isolated from every other i0 2 S0 is 1
CB

.

Define the random variable

Z = Â
i02h�1

r (hr(i))\S0
(1� hi0)si0,rxi0 .

Observe that

Pr
n

�

�

�

h�1
r (hr(i)) \ HC2k

(x)
�

�

�

= 1
o

� 1� C2

CB

and that

E |Z|2 = 1
CBk

kx�C2k
k22.

By Markov’s inequality, we have that |Z|2  10e

CBkkx�kk22 with probability at least 0.1.

Choose CB such that 10
CB

 1
2C1

and C2
CB

< 1
10 , then the assumptions on noise magnitude in

Lemma 2.1.16 will be satisfied for xi with probability at least 0.8.

Let qi be the (oriented) phase difference xi with Ân
j=1 hjgjxj. We can invoke Lemma 2.1.16

and obtain an estimate eqr,i which satisfies |eqr,i � qi|  ce. This happens with probability at

least 0.8 as demonstrated above. Taking the median over R = cR log n repetitions with an
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appropriate constant cR, we see that eqi satisfies

|eqi � qi|  ce (2.5)

with probability at least 1� 1/n2. This allows for taking a union bound over all i 2 S0.

Therefore (2.5) holds for all i 2 S0 simultaneously with probability � 1� 1/n.

Next, assume that it happens that (2.5) holds for all i 2 S0. Consider the for-loop of

Lines 15 to 20. It is clear that when q

0
i0 is exactly the phase of xi0 , it will hold that q

0
i is an

accurate estimate to the phase of xi up to an additive error of 2ce < h/2. The if-clause in

Line 18 will be true and the algorithm will terminate with an bx. Since the phases of the

entries are at least h apart, there will be no ambiguity in rounding and the phases in bx

are all correct, hence the error kx� bxk2 only depends on the magnitude errors, which is

exactly (2.1), obtained from applying Count-Sketch. When q

0
i0 is not xi0 , by the rotational

(k, h)-distinctness, {q

0
i} will coincide with P exactly or the if-clause will not be true. This

shows the correctness.

Remove the conditioning at the beginning of the proof increases the overall failure

probability by an additive 1/n. The overall failure probability is therefore at most 0.37+

1/n < 0.4.

Number of Measurements The submatrix FHH has O(k log n) rows, the submatrix FCS

has O((k/e) log n) rows, each Fr for r 2 [R] has O(k/e) rows. Hence the total num-

ber of rows is dominated by that of FCS and the R independent copies of Fr’s, that is,

O((k/e) log n+ R(k/e)) = O((k/e) log n) = O((k/h) log n).

Runtime Line 1 runs in time O(k poly(log n)), Line 2 in time O(|S| log n) = O(k log n),

Line 4 in time O(k). The runtime before the if-branch of Line 5 is thus O(k poly(log n)).

For the if-branch of Line 5, the noiseless case runs in time O(k log k), the for-loop from

Line 8 to 11 in time O(Rk log k) = O(k poly(log n)), the for-loop from Line 12 to 13 in time

O(R|S0|) = O(k log n), the for-loop from Line 15 to 20 in time O(k/h) since |P| = O(1/h),

the if-clause in Line 18 can be verified in time O(k) if the elements in P are sorted in advance.
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Hence the total runtime of the if-branch of Line 5 is O(k/h + k poly(log n)).

Therefore, the overall runtime is O(k/h + k poly(log n)).

2.1.5 `2/`2 with low failure probability for real signals

In this section, we assume that the valid phases are equidistant on S1 with a gap at least h

for all 1/( eCk)-heavy hitters of x, where eC is a (large) absolute constant.

Overview

Our algorithm resembles the real-signal algorithm in [Nak17a], but with a careful modifi-

cation so that it achieves a better decoding time. Similarly to the `•/`2 case, we first find

a set S of size O(

k
e

) containing all e

k -heavy hitters, point-query every i 2 S and then keep

the largest O(k) coordinates. As before, our goal is to find the relative phases among the

coordinates in S. For the real-signal algorithm in [Nak17a], phases degenerate to signs, and

the goal becomes what is called a Sign Prediction Problem, which is solved via a careful

reduction to the stochastic block model on a graph of t nodes with failure probability o(1).

The failure probability has been improved to 1/ poly(t) in [TMB+17], and this polynomially

small failure probability, as we shall see later, will be critical in attaining an O(k log n)

measurement complexity while achieving an O(k poly(log n)) decoding time.

As said above, the previous algorithm in [Nak17a] essentially reduces the problem of

inferring the relative signs on set S to a sign prediction problem, which we now extend

to complex signals as the Phase Prediction Problem. In order for this type of reduction to

work, the algorithm employed a pruning procedure on S to obtain a subset T ✓ S such

that the following three conditions hold: (a) finding the relative phases in T still gives the

`2/`2 error guarantee; (b) for every i 2 T, |xi| is “large” enough; (c) sampling a pair from T

is “fast” enough. We adopt the same pruning but do not immediately reduce to the Phase

Prediction Problem. Instead, we hash all n coordinates to B = O(

|T|
log |T| ) buckets and solve

the Phase Prediction problem in each bucket separately using O(log2 |T|) measurements.

Invoking the Chernoff bound and the Bernstein’s inequality, we see that the conditions (a),
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(b) and (c) will hold simultaneously in each bucket with high probability, which allows

for a union bound over all buckets. The low failure probability of the Phase Prediction

Problem also guarantees that the algorithm will succeed in all buckets. The remaining

piece is to combine the relative phases across buckets. However, we cannot run again the

algorithm for the Phase Prediction Problem directly on B buckets because it would not give

a runtime linear in k. Observe that we can afford an additional O(log |T|) factor in the

number of measurements, it is possible to obtain a time linear in k as follows. We create

a graph on B vertices (corresponding to the B buckets) with O(|T|) random edges, and

thus the graph is connected except with probability at least 1
poly(|T|) . Each edge consists of

O(log |T|) estimates of the relative phase between two vertices (buckets), which drives the

failure probability down to 1
poly(|T|) . The algorithm for finding the relative phases among

buckets is now a simple Depth First Search, running in linear time of the graph size. At the

end we output bx supported on T with the relative phases found.

To recover the relative phases within and across buckets, we downsample the coordinates

to obtain a subsignal consisting of exactly two coordinates in T so that we can infer their

relative phases. We repeat this process for sufficiently many times so that we can recover

the relative phases among different pairs of coordinates in T and obtain a global picture

of relative phases for all coordinates in T. Therefore the downsampling rates have to be

carefully chosen in order not to blow up the number of measurements while achieving an

overall failure probability of 1
poly(n) . We also note that our algorithm is non-adaptive and

T is unknown before the execution, thus we concatenate the sensing matrices of carefully

chosen sizes for each possible value of dlog |T|e = 1, 2, . . . ,Q(log k).

Algorithm and Sensing Matrix

We present the algorithm in Algorithm 5, and describe the sensing matrices of the subrou-

tines ComputeApprox, SignedEdgesPrediction and CombineBuckets below. We note that

the absolute constants involved in the algorithms can be determined constructively as we

unfold our analysis, though we do not attempt to optimize the constants in the analysis.
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Algorithm 5 An algorithm for the `2/`2 sparse recovery. The absolute constants C,C0,C0,C2,
etc., are constructive from the analysis.

1: eS  the set returned by the algorithm in Theorem 2.1.11 with K = Ck/e

2: Estimate |bxi| for all i 2 eS using Count-Sketch with K = C0k/e

3: S  index set of the largest C2k coordinates among {|bxi|}i2eS
4: for t 2 [C2k] do
5: Lt  ComputeApprox(x, t)
6: end for
7: T  Prune(x, S, {Lt})
8: B  d |T|

c log |T|e
9: l  dlog |T|e
10: D  d log k

4 log |T|e logk(
2
d

)

11: for r 2 [D] do
12: Pick O(k)-wise independent hash function hr : [n] ! [B]
13: for j 2 [B] do
14: Signsj  RelPhasesInBucketr,l(xh�1

r (j), h
�1
r (j) \ T)

15: end for
16: SignsB  CombineBucketsr,l(|bx|, T, hr, {Lt})
17: Signsr  relative phases on T inferred from {Signsj}j2[B] and SignsB
18: end for
19: Keep the most frequent pattern among {Signsr}r2[D]
20: Output bxT with the relative phases inferred

• ComputeApprox(x, t, S): The sensing matrix has C2k layers. The t-th layer has Q(log n)

independent rows of the form
✓

d1g1 d2g2 · · · dngn

◆

,

where gi are i.i.d. N (0, 1) variables and di are i.i.d. Bernoulli random variables such

that Edi = 1/(CLt), where CL is an absolute constant.

• RelPhasesInBucketsr,l : The sensing matrix has rr,l independent rows, where the q-th

row is given by
✓

dq,1gq,1 dq,2sq,2 · · · dq,nsq,n

◆

,

and

rr,l = Q
✓

1
e

2
h

2 l
2
(log(C2k)� l + 2)4

◆

.

In the above, {dq,i} are i.i.d. Bernoulli variables with E dq,i =
eh

2

C
b

l(log(C2k)�l+2)2 for some
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Algorithm 6 Prune Algorithm, which, given a vector bx, a set S and a sequence of thresholds
{Lt}, outputs a pruned set T

1: function Prune(bx, S, {Lt})
2: {zi}i2[|S|]  {|bxi|}i2S
3: Sort all zi in decreasing order
4: Find maximum m 2 [|S|] such that |zm|22 > e

C0(log(C2k)�l0+2)2 Lm (where 2l0�1 < m 
2l0)

5: T  {i 2 S : |bxi| � zm}
6: return T
7: end function

constant C
b

large enough and {sq,i} are i.i.d. random signs, and the constant inside

the Q-notation for rr,l depends on C
b

and the absolute constant c
sp

in Theorem 2.1.13.

• CombineBucketsr,l : The sensing matrix has (Cnoise + Cphase)lQl rows, divided into Ql

layers of (Cnoise + Cphase)l rows each, where Cnoise and Cphase are absolute constants,

and

Ql =
CQ

e

2
h

2 2
l
(log(C2k)� l + 2)4

for some absolute constant CQ .

For each q = 1, . . . ,Ql we pick a random vector (dq,1, dq,2, . . . , dq,n) of i.i.d. Bernoulli

coordinates such that E dq,i = Q(eh

22�l
(log(C2k)� l + 2)�2

). Each layer consists of

two sublayers, a noise estimation layer of Cnoisel rows and a relative phase estimation

layer of Cphasel rows. The j-th row (j = 1, . . . ,Cnoisel) in the noise estimation layer is
✓

dq,1xq,j,1gq,j,1 dq,2xq,j,2gq,j,2 · · · dq,nxq,j,ngq,j,n

◆

,

where {xq,j,i} are i.i.d. Bernoulli variables such that E xq,j,i = 1/2 and {gq,j,i} are i.i.d.

standard normal variables. The j-th row (j = 1, . . . ,Cphasel) in the phase estimation

layer is
✓

dq,1sq,j,1 dq,2sq,j,2 · · · dq,nsq,j,n

◆

,

where {sq,j,i} are i.i.d. Bernoulli variables such that E sq,j,i = 1/C00 for some absolute

constant C00.
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Algorithm 7 CombineBuckets Algorithm. The absolute constants C0,C1,C2,C0
1,C

00
2 ,C

00, etc.,
are constructive from the analysis.

1: function CombineBucketsr,l(|bx|, T, hr, {Lt})
2: Qgood  {q 2 [Ql ] : |{i 2 T : dq,i = 1}| = |hr({i 2 T : dq,i = 1})| = 2}
3: for each q in Qgood do
4: {uq, vq}  {i 2 T : dq,i = 1}
5: end for
6: Trim Qgood by removing the q’s with duplicate {uq, vq} pairs
7: GB  empty graph on hr(T)
8: for each q in Qgood do
9: |w1|, . . . , |wCnoisel |  measurements from the noise estimation layer
10: J  {j 2 [Cnoisel] : xq,j,uq = xq,j,vq = 0}
11: L0q  medianj2J |wj|2

12: Lthres  C00
eh

2

4C0
1C0(log(C2k)�l+2)2 L|T|

13: if L0q � Lthres then
14: |z1|, . . . , |zCphasel |  measurements from the phase estimation layer
15: Jgood  {j 2 [Cphasel] : sq,j,uq = sq,j,vq = 1}
16: for each j 2 Jgood do
17: qj  relative phase between xuq and xvq by applying Relative Phase Test

(Lemma 2.1.14) to |bxuq |, |bxvq | and |zj|
18: Round qj to the nearest phase in P
19: end for
20: Add an edge (hr(u), hr(v)) to GB with label being the most frequent

{qj}j2[Jgood]
21: end if
22: end for
23: SignB  the relative phases among all j 2 hr(T) collected by a depth first search on

GB
24: return SignB
25: end function

Next we describe how the algorithms ComputeApprox, SignedEdgesPrediction, Com-

bineBuckets operate.

• ComputeApprox(x, t): Suppose that the measurements in the t-th layer are y1, . . . , yQ(log n).

Return L = medianq y2q.

• RelPhasesInBucketr,l(z, T): For notational convenience, let us drop the subscripts r

in this paragraph and call a q 2 [rl ] good if |{i 2 T : dq,i = 1}| = 2. For each good q,

let {u, v} = {i 2 T : dq,i = 0} and run the Relative Phase Test (Lemma 2.1.14) to find an
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estimate of the relative phase between zu and zv. Recall that P is equidistant with gap

at least h, we can correct the estimate up to an additive error of h/2, and therefore we

obtain the relative phase between zu and zv with probability at least 2/3. We split all

good q’s into groups of size c
sp

ldlog le, where c
sp

is the constant from Theorem 2.1.13.

For each such group, we build a graph, called a working graph, on vertex set T with

the edge set and labels defined by the pairs recovered from the corresponding q’s in

the group, and solve the Phase Prediction Problem (Theorem 2.1.13) to find a pattern

of relative phases on T. We then return the most frequent pattern across all groups.

• CombineBucketsr,l(|bx|, T, hr, {Lt}): The pseudocode is presented in Algorithm 7. The

following is an intuitive description.

We call a q 2 [Ql ] good if |{i 2 T : dq,i = 1}| = |hr({i 2 T : dq,i = 1})| = 2, that

is, there are exactly two indices {uq, vq} in T which are subsampled and hashed to

different buckets. Retain the good q’s with distinct {uq, vq} pairs only. For each of

the retained good q’s, we first check whether the noise in the subsampled signal is

too large (Lines 9 to 13). Each |wj|2 for j 2 J is an estimate of the noise energy, and

their median L0q is supposed to be a good estimate. If L0q is bigger than some threshold

Lthres, we reject that q; otherwise, we accept the q and proceed to estimate the relative

phase between xuq and xvq . For each measurement from the phase estimation layer,

we run the Relative Phase Test (Lemma 2.1.14) to find Cphasel estimates of the relative

phase between xuq and xvq , and keep the most frequent estimate of the relative phase

as the relative phase estimate between the bucket pair {hr(uq), hr(vq)}. We build a

graph GB on the vertex set hr(T) with the edge set and labels defined by the accepted

{hr(uq), hr(vq)} pairs. By traversing GB with a depth first search, we can collect the

estimates of the relative phases among all j 2 hr(T), whenever GB is connected.

2.1.6 Analysis

We start with the total number of measurements and runtime.
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Lemma 2.1.23. The total number of measurements is O(e

�2
h

�2k log n).

Proof. It is straightforward that the number of measurements for both the heavy hitter

algorithm in Theorem 2.1.11 and CountSketch is O(e

�1k log(n/d)). The number of

measurements for ComputeApprox is O(k log n).

Since we need to stack the sensing matrices of RelSignsBucket and CombineBuckets

for l = 1, 2, . . . , log k, the total number of measurements for RelSignsBucket is upper

bounded by (up to a constant factor)

log(C2k)

Â
l=1

d log k
4l e logk n

Â
r=1

2l
cl

Â
j=1

1
e

2
h

2 l
2
(log(C2k)� l + 2)4

=

1
e

2
h

2 logk n
log(C2k)

Â
l=1

2l

cl

⇠

log k
4l

⇡

l2(log(C2k)� l + 2)4

. 1
e

2
h

2 logk n

0

@ Â
l> 1

4 log k

2l l(log(C2k)� l + 2)4 + Â
l 1

4 log k

2l log k(log(C2k)� l + 2)4
1

A .

The first term in the bracket can be bounded as

Â
l> 1

4 log k

2l l(log(C2k)� l + 2)4 
log(C2k3/4)+2

Â
u=log 5+2

2log(C2k)�u+2
(log(C2k)� u+ 2)u4

 20k log(C2k)
•

Â
u=0

u4

2u

. k log k,

and the second term as

Â
l 1

4 log k

2l log k(log(C2k)� l + 2)4 . k
1
4 log6 k.

It follows that the number of measurements needed for RelSignsBucket is O(e

�2k log n).
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The total number of measurements for CombineBuckets are (constants are suppressed):

log k

Â
l=1

✓⇠

log k
4l

⇡

logk n
◆✓

1
e

2
h

2 2
l
(log(C2k)� l + 2)4 · l

◆

 1
e

2
h

2 logk n

0

@ Â
l� 1

4 log k

l2l(log(C2k)� l + 2)4 + Â
l< 1

4 log k

2l l2(log(C2k)� l + 2)4
1

A

The two terms in the bracket can be bounded similarly as before, giving O(e

�2
h

�2k log n)

measurements for CombineBuckets in total.

Therefore, the total number of measurements used by the algorithm overall isO(e

�2
h

�2k log n),

as desired.

Lemma 2.1.24. The decoding time of the algorithm is O(e

�2k poly(log(n/d))).

Proof. In Algorithm 5, Line 1 takes O((k/e)poly(log(n/d)) times, Line 2 O((k/e) log n)

time and Line 3 O(k/e) time. Each call to routine ComputeApprox routine takes O(log n)

time and thus Lines 4–6 take O(k log n) time. The routine Prune takes O(|S| log |S|) =

O(k log k) time owing to sorting. Hence Lines 1–10 takes O((k/e)poly(log(n/d)) time in

total.

Next we examine RelSignsInBuckets. We shall see later in the analysis (Lemma 2.1.28)

that we can discard the repetition r in which hashing results in some bucket having more

than K2 log |T| elements from T, where K2 is an absolute constant. We can compute hr(i)

for all i 2 T in time O(|T|poly(log k)) using multi-point polynomial evaluation, and thus

in time O(|T|+ |B|) = O(T) count the number of elements of T in each bucket. Hence

we may assume that each bucket contains at most K2 log |T| elements from T in each call

to RelSignsInBuckets, which will run in O(rr,l poly(log |T|)) = O(

1
e

2
h

2 poly(log k)) time.

The total contribution of RelSignsInBuckets to the recovery algorithm is thus

O
✓

D · B · 1
e

2
h

2 poly(log k)
◆

= O
✓

1
e

2
h

2 |T|poly
✓

log
k
d

◆◆

.

In CombineBuckets (Algorithm 7), Lines 2–5 take time O(

|T|
e

poly(log k)), provided that

the sensing matrix is stored as n lists of nonzero entries in each column (cf. Remark 2.1.20).

We can use the phase estimation sublayer to determine whether dq,i = 0; note that we
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may lose a good row q if sq,j,uq = 0 for all j 2 [Cphasel], but this happens with 1/ poly(|T|)

probability and counts in the failure probability of the algorithm. The trimming step in Line 6

can be implemented by ignoring q if (uq, vq) has already been added to the graph GB, which

will be stored using the adjacency list representation. The body of the loop from Line 9 to

Line 13 takes O(l) = O(log k) time, and repeating |Qgood| = O(

|T|
e

2
h

2 poly(log k)) times takes

O(

1
e

2
h

2 |T|poly(log k)) time in total. Since we can stop adding new edges to GB after adding

k|T| edges, Line 23 runs in time O(|T|). The overall runtime of a call to CombineBuckets is

thus O(

1
e

2
h

2 |T|poly(log k)), and the total contribution of CombineBuckets to the decoding

time is

O
✓

D · |T|
e

2
h

2 poly(log k)
◆

= O
✓

1
e

2
h

2 |T|poly
✓

log
k
d

◆◆

.

Line 19 of Algorithm 5 runs in time O(D · |T| · (1/h)) = O((|T|/h) log(1/d)). The total

decoding time follows immediately.

Now we start proving the correctness of Algorithm 5. First we have the following lemma

for Steps 1–3.

Lemma 2.1.25. With probability 1� d/2, it holds that

(i) ||bxi|� |xi||2  e

2C2kkx�C2kk22 for all i 2 [n]; and

(ii) kxS � xk22  (1+ 0.9e)kx�kk22.

Proof. Part (i) is the classical Count-Sketch guarantee (Theorem 2.1.10). Part (ii) is similar

to the proof of [PW11, Theorem 3.1] but we present the proof below for completeness.

Let H1 = (

eS \ S) \ Hk(x), H2 = (

eSc) \ Hk(x) and I = S \ Hk(x). It is clear that

kxS � xk22 = kx�kk22 + kxH1k22 + kxH2k22 � kxIk22. (2.6)

Since each i 2 H1 is displaced by i0 2 I, we have that

|xi|� d  |bxi|  |bxi0 |  |xi0 |+ d, 8i 2 H1, i0 2 I,

where d =

q

e

2C2kkx�C2kk2 is the estimation error from Count-Sketch. Let a = maxi2H1 |xi|,
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b = mini2I |xi|, then a  b+ 2d and

kxH1k22 � kxIk22  ka2 � (C2 � 1)kb2

 k(b+ 2d)

2 � (C2 � 1)kb2

= �(C2 � 2)kb2 + (4kd)b+ 4kd

2

 C2 + 2
C2 � 2

kd

2

 e

C2 + 2
2(C2 � 2)

kx�C2kk22

(2.7)

On the other hand, by the guarantee of Theorem 2.1.11, the set eS contains all 1
Ck -heavy

hitters and thus

|xi|2 
e

Ck
kx�Ck/e

k22, 8i 2 H2.

Hence

kxH2k22  |H2| ·
e

Ck
kx�Ck/e

k22 
e

C
kx�kk22 (2.8)

By choosing C and C2 large enough, part (ii) follows immediately from (2.6), (2.7) and

(2.8).

In the rest of the analysis we condition on the events in the preceding lemma. Recall

that we have access only to |bxi| in our scenario.

Lemma 2.1.26 (ComputeApprox). With probability at least 1 � 1/ poly(n), the subroutine

ComputeApprox(x, t) returns a number L which satisfies 1
C1tkx�C2tk22  L  1

t kx�tk22, where C1

and C2 are absolute constants.

Proof. The argument is similar to the proof of (2.4) in Section 2.1.4. For instance, one can

take CL = 110 and show that

Pr
⇢

1
19747t

kx�353tk22  L  1
t
kx�tk22

�

� 0.55.

Repeating Q(log n) times with a big enough constant in the Q-notation, we can boost the

success probability of the event above to 1� 1/ poly(n).
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Lemma 2.1.27. The subroutine Prune(x, S, {Lt}) returns a set T ✓ S such that the following

conditions hold:

• 8i 2 T, |xi| � e

C0(log(C2k)�l0+2)2 L|T|, where l0 is such that 2l0�1 < |T|  2l0 .

• kxT � xk22  (1+ e)kx�kk22.

Proof. The first bullet is immediate by the design of the algorithm. For the second bullet

first observe that

kxT � xk22 = kxS\Tk22 + kxSck22.

The second term is bounded in part (ii) of Lemma 2.1.25 that kxSck22  (1+ e)kx�kk22.

For the first term, let lm be such that 2lm�1 < m  2lm and Cm = (log(C2k)� lm + 2)2.

Suppose that the coordinates of x are sorted in decreasing order in magnitude. We have for

|T|+ 1  m  log(C2k) that

|bxm|2 
e

C0Cm
Lm  e

C0mCm
kx�mk22 

e

C0mCm
(|xm+1|2 + · · ·+ |xC2k|2 + kx�C2kk2).

thus by the guarantee of Count-Sketch,

|xm|2 
e

C0mCm
(|xm+1|2 + · · ·+ |xC2k|2 + kx�C2kk22) +

e

2C2k
kx�C2kk22.

One can inductively obtain that

kxS\Tk22 = |x|T|+1|2 + · · ·+ |xC2k|22


"

e

C0(|T|+ 1)C|T|+1

log(C2k)

Â
m=|T|+2

✓

1+
e

C0mCm

◆

+

e

2C2k

log(C2k)

Â
m=|T|+1

✓

1+
e

C0mCm

◆

#

kx�C2kk22.

Observe that
log(C2k)

Â
m=|T|+1

✓

1+
e

C0mCm

◆

 exp

 

e

C0

log(C2k)

Â
m=|T|+1

1
mCm

!
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and

log(C2k)

Â
m=|T|+1

1
mCm

 (2l0 �m)

1
2l0�1

(log(C2k)� l0 + 2)2
+

log(C2k)

Â
l=l0+1

2l
1

2l�1
(log(C2k)� l + 2)2

 2
log(C2k)

Â
l=l0

1
(log(C2k)� l + 2)2

 2 Â
i�1

1
i2

 4,

which implies that

kxS\Tk22  e exp
✓

e
8C0

+

e
2C2

◆

kx�C2kk22.

Taking C0 and C2 big enough completes the proof.

The second part of the preceding lemma shows that if we can recover the phases of the

coordinates in T exactly, the `2/`2 error guarantee will be satisfied. Next we shall argue

that we can recover the phases of the coordinates in T exactly with probability at least

1� 1/ poly(|T|) in each loop from Lines 12 to 17 in Algorithm 5. Assume that |T| � 2, since

otherwise the algorithm is trivially correct with any guess of phase of the only coordinate

in T.

Lemma 2.1.28. It holds that

Pr
n

K1 log |T|  |T \ h�1
r (j)|  K2 log |T| for all j 2 [B]

o

� 1� 1
20|T|4 .

Let T0
= T [ H

(C2+1)|T|(x). It similarly holds that

Pr
n

K0
1 log |T|  |T0 \ h�1

r (j)|  K0
2 log |T| for all j 2 [B]

o

� 1� 1
20|T|4 .

Furthermore,

Pr
⇢

�

�

�

xh�1
r (j)\T0

�

�

�

2

2
 K3 log |T|

|T|
�

�x�C2|T|
�

�

2
2 for all j 2 [B]

�

� 1� 1
10|T|4 .

In the above, K1,K2,K3 are constants depending only on c and K0
1,K

0
2 are constants depending only

on c and C2.

Proof. The first is a standard application of the Chernoff bound. We nonetheless present
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the proof for completeness. For i 2 [n] and j 2 [B], let Xi,j be the indicator variable of the

event h(i) = j. Then EXi,j =
c log |T|

|T| and E Âi2T Xi,j = c log |T|. Note that Xi,j are negatively

associated, thus Chernoff bound can be applied, which, with appropriate constants, yields

that

Pr
n

K1 log |T|  |T \ h�1
(j)|  K2 log |T|

o

= Pr

(

K1 log |T|  Â
i2T

Xi,j  K2 log |T|
)

� 1
20|T|5 .

This allows us to take a union bound over all j 2 [B].

The bound on |T0 \ h�1
r (j)| is similar, noting that now E Âi2T0 Xi,j = c |T

0|
|T| log |T| 2

[c(C2 + 1) log |T|, c(C2 + 2) log |T|] and one can choose K0
1 and K0

2 to be linear in C2.

Next we prove the last part of the lemma. We shall use Bernstein’s inequality (The-

orem 2.1.9). Fix j 2 B and consider the random variables Zi,j, indexed by ([n] \ S)⇥ [B],

defined as Zi,j = 1{h(i)=j}|xi|2. It is easy to see that

|xi|2 
1
|T|

�

�x�C2|T|
�

�

2
2 , 8i /2 T0. (2.9)

Indeed, let T00
= H

(C2+1)|T|(x) \ HC2|T|(x), then

|T| · |x
(C2+1)|T||2  kxT00 k22  kx�C2|T|k

2
2,

whence (2.9) follows immediately.

In order to apply the Bernstein’s inequality, we need to bound the variance of Âi 62T0 Zi,j,

which we can do as

E

 

Â
i 62T0

Zi,j

!2

�
 

E Â
i 62T0

Zi,j

!2

=

✓

1
|B| �

1
|B|2

◆

Â
i 62T0

|xi|4 
1
|B| ·max

i 62T0
|xi|2 ·

�

�

�

x
(T0

)

c

�

�

�

2

2

 1
|B| · |T|

�

�x�C2|T|
�

�

4
2 ,

where the last inequality follows from (ii) in Lemma 2.1.27.

It then follows from the Bernstein’s inequality (Theorem 2.1.9) and appropriate choices
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of constants that

Pr

(

Â
i2Tc

Zi,j �
K3 log |T|

|T|
�

�x�C2|T|
�

�

2
2

)

 1
10|T|5 ,

which again allows for taking a union bound over all j 2 [B].

We continue with the proof of the guarantees of ComputeApprox, RelPhasesInBucket

and CombineBuckets.

Lemma 2.1.29 (RelPhasesInBuckets). In Line 14 the invocation of RelPhasesInBucketsr,l

finds the relative phases of coordinates i 2 h�1
r (j) \ T with probability 1� 1

10|T|4 .

Proof. Assume that the events in the preceding lemma all happen. Let T0
= T [H

(C2+1)|T|(x)

and we call a q 2 [rr,l ] super-good if |T0 \ h�1
r (j)| = 2.

A q 2 [rr,l ] is good with probability at least

✓|T \ h�1
r (j)|
2

◆✓

e

C
b

l(log(C2k)� l + 2)2

◆2 ✓

1� e

C
b

l(log(C2k)� l + 2)2

◆|T\h�1
r (j)|�2

� exp
✓

�eK2

4C
b

◆

K2
1e

2

2C2
b

(log(C2k)� l + 2)4
.

Conditioned on the fact that q is good, it is super-good with probability

✓

1� e

C
b

l(log(C2k)� l + 2)2

◆|(H
(C2+1)|T|\T)\h�1

r (j)|
� exp

✓

� e

4C
b

(K0
2 � K1)

◆

,

which can be made arbitrarily close to 1 by adjusting the constant C
b

.

Since there are rr,l rows, choosing an appropriate hidden constant in rr,l , we can

guarantee that the expected number of good q is 4.68c
sp

l2. Hence by a Chernoff bound, with

probability at least 1� (0.1183)l2 � 1� 1
20|T|4 , there are cspl

2 measurements corresponding to

good q’s, and most of them are supergood. This implies that there are at least c
sp

l2
c
sp

l log l =
l

log l

working graphs. Moreover, the expected energy of noise in each good measurement equals
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(omitting the subscript q)

E

�

�

�

�

�

�

Â
i2h�1

r (j)\T
disixi

�

�

�

�

�

�

2

=

eh

2

C
b

l(log(C2k)� l + 2)2
�

�

�

xh�1
r (j)\T

�

�

�

2

2

=

eh

2

C
b

l(log(C2k)� l + 2)2
�

�

�

xh�1
r (j)\T0

�

�

�

2

2

 eh

2

C
b

l(log(C2k)� l + 2)2
K3 log |T|

|T|
�

�x�C2|T|
�

�

2
2

 K3

C
b

h

2 · e

(log(C2k)� l + 2)2
· 1
|T|kx�C2|T|k

2
2

 K3C1C0

C
b

h

2 · e

C0(log(C2k)� l + 2)2
L|T|.

We can choose an appropriate constant C
b

that is big enough such that in each such

measurement the Relative Phase Test succeeds, by Markov’s inequality, with probability at

least 2
3 . Along with the guarantees of the Phase Prediction Problem, it follows that using

every working graph we can find the relative phases of the coordinates in h�1
r (j) \ T with

probability at least 1� 1
l8.33 . By a Chernoff bound, with probability at least 1� (

1
l8.33 )

l
log l

=

1� 1
28.33l � 1� 1

20|T|4 , at least half of the working graphs predict the relative phases correctly.

The overall failure probability is at most 1
20|T|4 +

1
20|T|4 =

1
10|T|4 .

Lemma 2.1.30 (CombineBuckets). In Line 16 the subroutine CombineBucketsr,l finds the

relative phases between hr(T) with probability at least 1� 1
10|T|4 .

Proof. We call a q 2 [Ql ] good, and call a good q accepted if L0q � Lthres. We shall also define

(i) a notion called excellent q for the good q’s; and (ii) an event E0 regarding a low noise

magnitude in the Relative Phase Test for all accepted q’s. Then our argument goes as follows.

Consider the following events:

• E1: There are at least k2l excellent q’s.

• E2: All excellent q’s will be accepted.

• E3(q): Given that q is accepted, its associated edge has the correct relative phase

between {uq, vq}.
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• E4: GB is connected.

When E1 and E2 happen, there are at least k2l edges in the graph GB. If E3(q) happens for

all accepted q’s, all edges in the graph have correct labels, and the algorithm would return a

correct answer whenever E4 happens. We claim that

Pr
{dq,i}

(E0) � 1� 1
20|T|4 ; (2.10)

Pr
{dq,i}

(E1) � 1� 1
40|T|4 ; (2.11)

Pr
{xq,j,i},{gq,j,i}

(E2|E0) = 1; (2.12)

Pr
{sq,j,i}

(E3(q)|E0) � 1� 1
120|T|6 for each accepted q. (2.13)

Since the pair {uq, vq} is uniformly random for a good q, it follows from Theorem 2.1.12 that

Pr
{dq,i}

(E4) � 1� 1
60|T|4 .

Hence the overall failure probability, after taking a union bound, is at most 1
10|T|4 as desired.

Below we prove our claims. A q 2 [Ql ] is good with probability

Pr
n

|h({i 2 T : dq,i = 1})| = 2
�

�

�

|{i 2 T : dq,i = 1}| = 2
o

Pr
�

|{i 2 T : dq,i = 1}| = 2
 

= W(1) · W

 

✓|T|
2

◆✓

e

2l(log(C2k)� l + 2)2

◆2
!

= W
✓

e

2

(log(C2k)� l + 2)4

◆

.

Similarly to the proof of the preceding lemma, a good q is super-good with probability that

can be made arbitrarily close to 1.

For a good q, let {uq, vq} = {i 2 T : dq,i = 1} and nq 2 Rn be the noise vector defined as

(nq)i =

8

>

>

<

>

>

:

dq,ixi, i /2 T;

0, i 2 T.
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When q is supergood,

E
{dq,i}

knqk22 '
eh

2

2l(log(C2k)� l + 2)2
kxT0ck22 

eh

2

|T|(log(C2k)� l + 2)2
kx�C2|T|k

2
2.

Recall that L|T| � 1
C1|T|kx�C2|T|k22. With an appropriate choice of the hidden constant

(depending on C0 and C1) in the subsampling rate E dq,i, it follows from Markov’s inequality

that

Pr
{dq,i}

⇢

knqk22 
C00

eh

2

4C0
1C

0
3C0(log(C2k)� l + 2)2

L|T|

�

� 0.95. (2.14)

We call a q excellent if it is supergood and satisfies the event in (2.14). Uncondition-

ing on goodness and supergoodness, we know that each q is excellent with probability

W(e

2/(log(C2k)� l+ 2)4), and the expected number of excellent q’s among [Ql ] is W(2l). By

an appropriate choice of the constant CQ and a Chernoff bound, we see that with probability

1� 1
40·24l there exist k2l excellent q’s that correspond to different edges in the graph GB,

where k is the constant in Theorem 2.1.12. This proves (2.11), which regards E1.

Next we consider E2. Note that Pr(j 2 J) = 1/4, by a Chenorff bound and choosing

Cnoise = 1320, we have that |J| � 260 log |T| with probability at least 1� 1
40|T|6 . Taking a

union bound over all good q’s,

Pr {|J| � 260 log |T| for all good q} � 1� 1
40|T|4 . (2.15)

Recall that a good bucket is supergood with overwhelming probability. A similar

argument to the proof of (2.4) in Section 2.1.4 gives that (for instance, C0
1 = 316, C0

2 = 10,

C0
3 = 3)

Pr
⇢

1
C0
1
k(nq)�C0

2
k22  |wj|2  C0

3knqk22
�

� 0.7.

By a Chernoff bound and a union bound over all good q’s,

Pr
⇢

1
C0
1
k(nq)�C0

2
k22  L0q  C0

3knqk22 for all good q
�

�

�

�

|J| � 260 log |T| for all good q
�

� 1� 1
40|T|4 .

(2.16)
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Define the event E0 as

E0 =
⇢

1
C0
1
k(nq)�C0

2
k22  L0q  C0

3knqk22 for all good q
�

,

then it follows from (2.15) and (2.16) that

Pr(E0) � 1� 1
40|T|4 �

1
40|T|4 = 1� 1

20|T|4 ,

which proves (2.10).

In the rest of the proof we condition on E0. When q is excellent, we have that

L0q  C0
3knqk22  C0

3 ·
C00

eh

2

4C0
1C

0
3C0(log(C2k)� l + 2)2

L|T| =
C00

eh

2

4C0
1C0(log(C2k)� l + 2)2

L|T|

and q will be accepted. This proves (2.12), which regards E2.

As the last step, we consider E3. Suppose that q is accepted, then we have

1
C0
1
k(nq)�C0

2
k22  L0q 

C00

C0
1
· eh

2

4C0(log(C2k)� l + 2)2
L|T|,

that is,

k(nq)�C0
2
k22  C00 · eh

2

4C0(log(C2k)� l + 2)2
L|T|.

Consider now one of those accepted q’s and the associated Cphasel estimates from the

phase estimation layer. Define the following two conditions:

(P1) sq,j,uq = sq,j,vq = 1

(P2) sq,j,i = 0 for all i 2 HC0
2
(vq)

Note that Pr(P1) = (

1
C00 )

2
=: 2g and Pr(P2) � e�C0

2/C
00 . Choosing C00

= 45 and Cphase � 1159
g

large enough and by two Chernoff bounds, we conclude that, with probability at least

1� 1
120|T|4 , there are at least gCphasel measurements satisfying (P1) and at least 0.7 fraction

of them satisfy (P2). We shall focus on the measurements satisfying (P1).

In each measurement that further satisfies (P2), the expected noise energy

E
{sq,j,i}

 

Â
i/2T

sq,j,idq,ixi

!2

=

1
C00 k(nq)�C0

2
k22 

eh

2

4C0(log(C2k)� l + 2)2
L|T|.
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By Markov’s inequality, we can guarantee that each Relative Phase Test fails with probability

at most 1
4 . Hence, by a standard Chernoff bound, at least 5

7 of those tests will give the

correct answer, and thus the majority of the gCphasel tests will give the correct answer, with

probability at least 1� 1
120·26l , provided that Cphase � 1292

g

. This proves (2.13), which regards

E3.

Combining Lemmata 2.1.28, 2.1.29 and 2.1.30, we see that each loop from Lines 12 to 17

in Algorithm 5 finds the relative phases among {xi}i2T correctly with probability at least

1� 1p
2e|T|4 . Since there are D repetitions, we can recover the relative phases with probability

at least 1� d/2. Unconditioning on the events in Lemma 2.1.25, we see that the failure

probability is at most d. The proof of Theorem 2.1.8 is now complete.

2.2 One-Bit Compressed Sensing

2.2.1 Our Contribution

We study the non-uniform case under adversarial noise and give the first result that achieves

sublinear decoding time and nearly optimal O(d

�2k+ k log n) measurements, where d is the

reconstruction error, k is the sparsity and n is the universe size. For clearness, this scheme

allows reconstruction of a fixed x 2 Rn and not of all x 2 Rn; we refer to this a non-uniform

guarantee.

We compare with two previous schemes, which are the state of the art. The first scheme

appears in [PV13b], which achieves d

�2k log(n/k)measurements and poly(n) decoding time,

while the other appears in [Nak17b] and achieves O(d

�2k+ k log(n/k)(log k+ log log n))

measurements and poly(k, log n) decoding time. We mention that the aforementioned two

works are incomparable, since they exchange measurements and decoding time. However,

generalizing [Nak17b] and using the linking/clustering idea of [LNNT16] (which is closely

related to list-recoverable codes), we are able to almost get the best of both worlds. Our

scheme is strictly better the scheme of [PV13b] when k  n1�g, for any constant g; we note

that the exponent of k in our running time is the same as the exponent of n in the running
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time of the relevant scheme of [PV13b].

We note that [PV13b] discusses also uniform guarantees for the one-bit compressed

sensing problem. Our result is non-uniform and thus incomparable with some of the results

in that paper; the relevant parts from [PV13b] are Theorem 1.1 and subsection 3.1. It is

important to note that the guarantee of our algorithm cannot be achieved in the uniform

setting, even when linear measurement are allowed [CDD09] (i.e. we do not have access

only to the sign of the measurement), thus a comparison is meaningful (and fair) only with

a non-uniform algorithm.

2.2.2 Preliminaries and Notation

For a vector x 2 Rn we define H(x, k) = {i 2 [n] : |xi|2 � 1
kkx�kk22}. If i 2 H(x, k),

we will say that i is a 1/k-heavy hitter of x. For a set S we define xS to be the vector

that occurs after zeroing out every i 2 [n] \ S. We define head(k) to be the largest k in

magnitude coordinates of x, breaking ties arbitrarily, and we define x�k = x
[n]\head(k), which

we will also refer to as the tail of x. Let Sn�1
= {x 2 Rn : kxk2 = 1}. For a number q

we set sign(q) = 1 if q � 0, and �1 otherwise. For a vector v = (v1, v2, . . . , vn) we set

sign(v) = (sign(v1), sign(v2), . . . , sign(vn)). We also denote P([n]) to be the powerset of

[n].

Definition 2.2.1 (Vertex Expander). Let G : [N]⇥ [D] ! [M] be a bipartite graph with N left

vertices, M right vertices and left degree D. Then, the graph G will be called a (k, z) vertex expander

if for all sets S ✓ [N], |S|  k it holds that G(S) � (1� z)|S|D.

2.2.3 Main Result

The main result of this subchapter is the following.

Theorem 2.2.2. There exists a distribution D 2 Rm⇥n, a procedure Dec : {�1,+1}m ! Rn and

absolute constants C1,C2 > 1 such that
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8x 2 Sn�1 : PF⇠D [bx = Dec(sign(Fx)) : kx� bxk22 > 2kx�kk22 + d]  e�C1d

�1k
+ n�C2 ,

and kbxk0 = O(k).

The number of rows of F is m = O(k log n + d

�2k), and the running time of Dec is

poly(k, log n).

It should clear that since bx is O(k)-sparse, we do not need to output an n-dimensional

vector, but only the positions where the vector is non-zero.

2.2.4 Overview of our Approach

The one-bit compressed sensing framework has a neat geometrical representation: one can

think of every measurement sign(
⌦

Fj, x
↵

) indicating on which side of the hyperplane Fj the

vector x lies. One of the results of [PV13b] shows that this is possible with O(d

�2k log(n/k))

random hyperplanes when random post-measurement noise v is added, i.e. y = sign(Fx+

v); the paper gives also other, very intersesting results, but we will not focus on them in this

work. To achieve sublinear decoding time we do not pick the hyperplanes (measurements)

at random, but we construct a structured matrix that allows us to find all 1/k-heavy hitters

of x. This approach also has been followed in one of the schemes of [Nak17b]. There the

author implemented the dyadic trick [CH09] in the one-bit model, showing that it is possible

to recover the heavy hitters of x from one-bit measurements, using O(k log(n/k)(log k+

log log n)) measurements. Our results is an extension and generalization of that paper,

along with the linking and clustering technique of [LNNT16].

In the core of our scheme, lies the design of a randomized scheme which is analo-

gous to the “partition heavy hitters” data structure of [LNNT16]; we call this scheme

One-Bit PartitionPointQuery. More concretely, the question is the following: given a

partition P of the universe [n], is it possible to decide if a given set S 2 P is heavy, when we

are given access only to one-bit measurements? We answer this question in the affirmative

and then combine this routine with the graph clustering technique of [LNNT16]. We thus
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show that, similarly to that paper, it is possible to reduce the problem of finding the heavy

coordinates in the one-bit framework to the same clustering problem.

2.2.5 Toolkit

Lemma 2.2.3 (Chernoff Bound). Let X1, . . . ,Xr be Bernoulli random variables with E[Xi] = p.

There exists an absolute constant cch such that

P

"

|Â
i
Xi � pr| > epr

#

 e�cche

�2pr

Lemma 2.2.4 (Bernstein’s Inequality). There exists an absolute constant cB such that for indepen-

dent random variables X1, . . . ,Xr, with |Xi|  K we have that

8l > 0,P

"

|Â
i
Xi �EÂ

i
Xi| > l

#

 e�CBl/s

2
+ e�CBl/K,

where s

2
= Âi E(Xi �EXi)

2.

Theorem 2.2.5 (Fixed Signal, Random Noise Before Quantization [PV13b]). Let x 2 RN and

G 2 Rm⇥N, each entry of which is a standard gaussian. If y = sign(Gx+ v), where v ⇠ N (0, s2 I),

then the following program

bx = argmax hy,Gxi , s.t. kzk1 
p
k

returns a vector bx such that kx� bxk22  d, as long as

m = W(d

�2
(s

2
+ 1)k log(N/k)).

2.3 Main Algorithm

Our algorithm proceeds by finding a set S of size O(k) containing all coordinates i 2 H(x, k)

and then runs the algorithm of [PV13b], by restrictring on columns indexed by S. The

scheme that is used to find the desired set S is guaranteed by the following Theorem.
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Theorem 2.3.1. There exists a randomized construction of a matrix F 2 Rm0⇥n, a decoding

procedure OneBitHeavyHitters : {�1, 1}m0 ! P([n]) and an absolute constant c, such that

S = OneBitHeavyHitters(sign(Fx)) satisfies the following, with probability 1� 1
nC1 . a) |S|  ck,

and b) 8i 2 H(x, k), i 2 S. Moreover, the number of rows of F equals m0
= O(k log n) and the

running time of OneBitHeavyHitters is O(k · poly(log n)).

Given the above theorem we show how to prove the Theorem 1.

Proof. We vertically concatenate the matrix F from Theorem 2.3.1 and the matrix G guar-

anteed by Theorem 2.2.5. Then, we run the algorithm OneBitHeavyHitters(sign(Fx)) to

obtain a set S. Then we run the following algorithm:

bx = argmax hy,GSzi , s.t. kzk1 
p
k.

Last, we output bx. Since Gx = GSxS + G
[n]\Sx[n]\S, and G

[n]\Sx[n]\S ⇠ N (0, kx
[n]\Sk22 I)

and kx
[n]\Sk2  1, by combining the guarantees of theorems 2.2.5 and 2.3.1 we have that

kx� bxk22 = kxS � bxSk22 + kx
[n]\Sk22  d + 2kx�kk22,

because kx
[n]\Sk22  kx�kk22 + Âi2head(k)\H(x,k) x2i  kx�kk22 + k 1kkx�kk22 = 2kx�kk22.

Remark: From the discussion in this subsection, it should be clear than any algorithm

that runs in linear time in n and has the same guarantees as as Theorem 2.2.5 immediatelly

implies, by our reduction, an algorithm that achieves O(kpoly(log n)) time. Thus, any

subsequent improvement of that type over [PV13b] gives an improvement of our main result

in a black-box way.

2.3.1 Reduction to small Sparsity

The following trick is also used in [LNNT16]. If k = W(log n), we can hash every coordinate

to Q(k/ log n) buckets and show that it suffices to find the 1
log n -heavy hitters in every bucket

separately. Here, we give a proof for completeness. First, we state the following lemma,

which is proven in section 2.4.
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Theorem 2.3.2. Let C0,C0 be absolute constants and suppose that k  C0 log n. Then there exists

a randomized construction of a matrix F 2 Rm00⇥n with m00
= O(k log n) rows, such that given

y = sign(Fx), we can find, with probability 1� n�C0 and in time O(poly(log n)), a set S of size

O(k) containing every i 2 H(x, k).

Given this lemma, we show how to prove Theorem 2. This lemma is also present in

[LNNT16], but, for completeness, we prove it again here.

Proof. If k < C0 log n, we run the algorithm guaranteed by the previous lemma. Otherwise,

we pick a hash function g : [n] ! [C00k/ log n] and for j 2 [C00k/ log n] we obtain set Sj

using lemma. We then output the union of all these sets. Define z = C00k/ log n. We argue

correctness.

For j 2 [C00k/ log n] we use the Chernoff Bound to obtain that

P
h

|g�1
(j) \ H(x, k)| � log n

i

 e�C000 log n.

We will now invoke Bernstein’s inequality for the random variables
n

Xi = 1g(i)=j

o

i2[n]\H(x,k)
;

for these variables we have K < 1
kkx�kk22 and

s

2 < Â
i2[n]\H(x,k)

x4i (z
�1 � z�2

)  k
z
kx�kk42 Â

i2[n]\H(x,k)
x2i =

k
z
kx�kk42

P

2

4| Â
i2g�1

(j)\H(x,k)
x2i �

log k
k

kx�kk22

3

5  e�C000 log n.

By a union-bound over all 2z = 2C00k/ log n events, 2 for every buckets j 2 [z], we get

the proof of the lemma.

We now focus on proving Theorem 2.3.2.
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2.3.2 One-BitPartitionPointQuery

In this section we prove the following Theorem, which is the main building block of our

algorithm.

Theorem 2.3.3. Let x 2 Rn and a partition P = {P1, P2, . . . , PT} of [n]. There exists an oblivious

randomized construction of a matrix Z 2 Rm⇥n along with a procedureOne-BitPartitionPointQuery :

[T] ! {0, 1}, where m = O(k log(1/d)), such that given y = sign(Zx) the following holds for

j⇤ 2 [T].

1. If Pj⇤ contains a coordinate i 2 H(x, k), then One-BitPartitionPointQuery(j⇤) = 1 with

probability 1� d.

2. If there exist at least ck indices such that kxPjk2 � kxPj⇤ k2, thenOne-BitPartitionPointQuery(j⇤) =

0 with probability 1� d.

Moreover, The running time of is O(log(1/d)).

We describe the construction of the the matrix Z. We are going to describe the matrix

as a set of linear measurements on the vector x. For i 2 [n], j 2 [T], B 2 [CBk], ` 2 [3], r 2

[C3 log(1/d)] we pick the following random variables:

1. fully independent hash functions hr,` : [T] ! [CBk].

2. random signs sj,B,`,r. Intuitively, one can think of this random variable as the sign

assigned to set Pj in bucket B of sub-iteration ` of iteration r.

3. normal random variables gi,r. One can think of this random variable as the gaussian

associated with i in iteration r.

Then, for every B 2 [CBk], ` 2 [3], r 2 [CB log(1/d)] we perform linear measurements

zB,`,r = Â
j2h�1

r,` (B)

sj,B,`,r Â
i2Pj

gi,rxi,

as well as measurements �zB,`,r (the reason why we need this will become clear later).
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Of course we have access only to the sign of the measurement: yB,`,r = sign(zB,`,r). We

slightly abuse notation here, as y is described as a 3-dimensional vector; it is straightforward

to see how this vector can be mapped to a 1-dimensional vector.

We will make use of the following lemmata. The value CB is a large enough constant,

chosen in order for the analysis to work out. Before proceeding with the lemmas, we pick

constants Cu,Cd such that

1. PY⇠N (0,1)[|Y| < Cu] =
19
20 .

2. PY⇠N (0,1)[|Y| > Cd] =
19
20 .

Lemma 2.3.4. Fix i⇤ 2 H(x, k), j⇤ such that i⇤ 2 Pj⇤ , as well as r 2 [C3 log(1/d)]. We also set

B` = hr,`(j⇤). Then, with probability at least 3
5 we have that for all ` 2 [3] either

yB`,`,r = sj⇤,B`,`,r or yB`,`,r = �sj⇤,B`,`,r.

Proof. For the need of the proof we define B�1
` = h�1

r,` (hr,`(j
⇤
)). First, observe that for all

` 2 [3] that the random variable

Y` = Â
j2B�1

` \{j⇤}
sj,B`,`,r Â

i2Pj
gi,rxi

is distributed as
v

u

u

u

t

0

@ Â
j2B�1

l \{j⇤}
Â
i2Pj

x2i

1

A · N (0, 1).

Observe that with probability at least 19
20 , |Y`| will be at most

Cu

s

Â
j2B�1

` \{j⇤}
Â
i2Pj

x2i .

Define

Z` = Â
j2B�1

` \{j⇤}
Â
i2Pj

x2i .

Consider now the set Pbad of Pj, j 2 [T] \ {j⇤} for which there exists i 2 H(x, k) such

that i 2 Pj. Since there are at most 2k elements in Pbad, with probability at least 1� 2
CB
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it holds that B�1
` \ Pbad = ∆. Let this event be W . It is a standard calculation that

E[Zl |W ]  1
CBkkx�kk22. Invoking Markov’s inequality one gets that Zl is at most 20

CBkkx�kk22
with probability at least 19

20 . Putting everything together, this gives that

|Y`| > Cu

r

20
CBk

kx�kk2

with probability 1
20 . The probability that there exist l 2 [3] such that |Y`| > Cu

q

20
CBkkx�kk2

is at most 3
20 . We now observe that the

| Â
i2Pj⇤

gi,rxi| � CdkxPj⇤ k2 � Cd
1p
k
kx�kk2

with probability at least 19
20 . The above discussion implies that with probability at least

15
20 the quantity |Âi2Pj⇤ gi,rxi| is larger than |Y`|, for all l 2 [3], if Cd/

p
k > Cu

q

20
CBk . This

means that, with probability at least 3
4 , the sign of zB`,`,r will be determined by the sign

of sj⇤,B`,`,r Âi2Pj⇤ gi,rxi for all ` 2 [3]. This implies that if Âi2Pj⇤ gi,rxi > 0, we will get that

yB`,`,r = sj⇤,B`,`,r. On the other hand, if Âi2Pj⇤ gi,rxi < 0 then yB`,`,r = �sj⇤,B`,`,r. This gives

the proof of the lemma.

Lemma 2.3.5. Let j⇤ such that kxPj⇤ k2 > 0. We also define B` = hr,`(j⇤). Assume that there exist

at least ck indices j such that kxPjk2 � kxPj⇤ k2, for some absolute constant c. Then, with probability
3
5 , there exists indices `1, `2 2 [3] such that

yB`1 ,`1,r = sj⇤,B`1 ,`1,r
and yB`2 ,`2,r = �sj⇤,B`2 ,`2,r

.

Proof. For the need of the proof we also define B�1
` = h�1

r,` (hr,`(j
⇤
)). Fix ` 2 [3]. Let Pgood be

the set of indices j 2 [T] such that kxPjk2 � kxPj⇤ k2. Let the random variable Z` be defined

as

Z` = |{j 2 Pgood \ {j⇤} : j 2 B�1
` }|.

Observe now that E[Z`] =
ck
CBk =

c
CB

and moreover Zl is a sum of independent Bernoulli

random variables with mean 1
CBk , hence a standard concetration bound gives that, for c large
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enough, Z` will be larger than 4C2
dC

2
u with probability 19

20 . This implies that

Â
j2B�1

` \{j⇤}
kxPjk22 � 4C2

dC
2
ukxPj⇤ k22.

for all ` 2 [3]. This implies that, for any l 2 R,

P

2

4| Â
j2B�1

` \{j⇤}
sj,B` Â

i2Pj
gi,rxi| � l

3

5 �

P
h

2CdCukxPj⇤ k2 · |N (0, 1)| � l

i

.

The above implies that

P

2

4| Â
j2Bl\{j⇤}

sj,B`,`,r Â
i2Pj

gi,rxi| � 2CukxPj⇤ k2

3

5 � 19
20

and moreover

P

2

4| Â
i2Pj⇤

gi,rxi|  CukxPj⇤ k2

3

5 � 19
20

,

which implies that with probability 17
20 we have that

| Â
j2B�1

` \{j⇤}
sj,B�1

` ,l,r Â
i2Pj

gi,rxi|  2| Â
i2Pj⇤

gi,rxi|.

Observe now that yB`,`,r is the same as the sign of

Âj2B`\{j⇤} sj,B�1
` ,l,r Âi2Pj gi,rxi, which, because of the random signs, means that

P
⇥

yB`,`,r = 1
⇤

=

1
2
.

Moreover, we get that yB`,`,r and sj⇤,B`,`,r are independent. Conditioned on the previous

events, the probability that either

yB`,`,r = sj⇤,B`,`,r

for all ` 2 [3], or
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yB`,`,r = �sj⇤,B`,`,r

for all ` 2 [3], is 2
8 . This gives the proof of the claim since 3

20 +
2
8  8

20 =

2
5 .

We are now ready to proceed with the proof of Theorem 2.3.3.

Proof. We iterate over all r 2 [C3 log(1/d)] and count the number of “good” repetitions:

a repetition r is good if for all ` 2 [3], yhr,`(j⇤),`,r = sj,hr,`(j⇤),`,r or yhr,`(j⇤),`,r = �sj,hr,`(j⇤),`,r.

We also check if there exists l 2 [3] such that yhr,`(j⇤),`,r = 0 by checking the values of

yhr,`(j⇤),`,r = 0 and �yhr,`(j⇤),`,r = 0. If there exists no such ` and the number of good

repetitions is at least d 12C3 log(T/d)e+ 1 we output 1, otherwise we output 0.

We proceed with the analysis. First of all, if there exists an ` 2 [3] that satisfies yhr,`(j⇤),`,r = 0,

this would mean that kxPj⇤ k = 0. Let us assume that this is not the case, otherwise we can

ignore j⇤. If i⇤ 2 H(x, k) belongs to Pj⇤ , for some j⇤, using Lemma 2.3.4 the expected number

of good iterations equals (3/5)C3 log(1/d),and by a Chernoff Bound we get that at least

(2.6/3) · (3/5)C3 log(1/d) = (2.6/5)C3 log(1/d) repetitions will be good with probability

1� e�W(log(|T|/d)) � 1� d,

for large enough C3. In the same way, using Lemma 2.3.5 we can bound by d the probability

that a set Pj⇤ , for which there exist at least ck set Pj with kxPjk2 � kxPj⇤ k2, has more than

d 12C3 log(T/d)e � 1 good repetitions. This concludes the proof of the lema.

The following lemma is immediate by taking d = T�C0�1 and taking a union-bound over

all j 2 [T].

Lemma 2.3.6 (One-BitPartitionCountSketch). Let x 2 Rn and a partition P = {P1, P2, . . . , PT}

of [n]. There exists a randomized construction of a matrix Z 2 Rm⇥n, such that given y = sign(Zx),

we can find in time O(k log T) a set S of size O(k) that satisfies contains every j 2 [T] for which

there exists i 2 Hk(x) \ Pj. Moreover, the failure probability is T�C0 .
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2.3.3 One-Bit b-tree

We now describe the scheme of One-Bit b-tree. The b-tree is a folkore data structure

in streaming algorithms, first appearing in [CH09] in the case of vectors with positive

coordinates. The version of the b-tree we are using here is more closely related in [LNNT16].

We remind the reader that the aforementioned papers treated the case where we have

access to Fx and not only to sign(Fx). Here, we describe it a sensing matrix associated

with a decoding procedure, rather than a data structure. Given the b-tree, we can find

elements i 2 H(x, k) and get an analog of Theorem 1; however, this would only give

1/poly(log n) failure probability. Getting 1/poly(n) failure probability requires using the

ExpanderSketch algorithm of [LNNT16]In fact, we can use the One-Bit b-tree to speed up

the One-Bit ExpanderSketch decoding procedure, but since our overall scheme already has

a polynomial dependence on k in the running time due to the application of Theorem, this

will not give us any crucial improvement. However, we believe that it might of independent

interest in the sparse recovery community.

The following lemma holds.

Lemma 2.3.7. Let k, b < n be integers. There exists a randomized construction of a matrix A 2

RM⇥n such that given y = sign(Ax) we can find a set S of size O(k) such that 8i 2 H(x, k), i 2 S.

The total number of measurements equals

M = O(k
log(n/k)
log b

(log(k/d) + log log(n/k)� log log b))

the decoding time is

O(bk
log(n/k)
log b

(log(k/d) + log log(n/k)� log log b))

and the failure probability is d.

Proof. Let R be the smallest integer such that kbR � n; this means that R = dlog(n/k)/ log be.

For r = 0, . . . ,R we use the One-Bit PartitionCountSketch scheme guaranteed by Lemma,

with d = d/(bkR) and partition Pr = {{1, . . . ,
⌃ n
kbr
⌥

}, {
⌃ n
kbr
⌥

+ 1, . . . , 2
⌃ n
kb2
⌥

}, . . .}, of size
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Tr = Q(kbr).

The total number of measurements equals

O(Rk log(bkR/d)) = O(k
log(n/k)
log b

(log(k/d) + log log(n/k)� log log b)).

We can think of the partitions T1, T2, . . . , TR as the levels of a b-ary tree; for every set if

T 2 Tr, there are b sets T0 2 Tr+1 which are neighbours of T. The decoding algorithms starts

at quering the One-Bit PartitionCountSketch for r = 0 to obtain a set S0. Then, for every

i 2 [1, r], it computes all the neighbours of Sr�1, where the for a total of O(b|S|) sets. Then

using One-BitPartitionPointQuery we query every new partition, to obtain a set Sr of

size O(k). The output of the algorithm is the set SR. The running time then is computed as

O(bRk log(bkR/d) = O(bk
log(n/k)
log b

(log(k/d) + log log(n/k)� log log b))

From the above lemma, we get the following result, by carefully instatianting the

parameter b.

Lemma 2.3.8. There exists a b such that the One-Bit b-tree uses O(g

�1k log(n/d)) measurements

and runs in time O(g

�1
(k log(n/d))

2+g

), for any arbitarily constant g.

Proof. We set b = (k log(n/d))

g and observe that the number measurements is at most

O
✓

k
log n

g(log(k/d) + log log n)
(log(k/d) + log log n)

◆

= O
✓

1
g

k log(n/d)

◆

,

while the decoding time becomes

O
✓

(k log(n/d))

gk
log n

g(log(k/d) + log log n)
(log(k/d) + log log n)

◆

= O
✓

1
g

(k log(n/d))

2+g

◆
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2.3.4 One-Bit ExpanderSketch

In this subsection we prove Theorem 2.3.2. Given the results about One-BitPartitionCountSketch

we developed in the previous sections, the proof of the theorem is almost identical to

[LNNT16] with a very simple modification. For completeness, we go again over their

construction. We remind the reader that in our case k = O(log n).

Construction of the SensingMatrix: We first pick a code enc : {0, 1}log n ! {0, 1}O(log n),

which corrects a constant fraction of errors with linear-time decoding; such a code is

guaranteed by [Spi96]. We then partition enc(i) into s = Q(log n/ log log n) continuous

substrings of length t = Q(log log n). We denote by enc(i)j the j-th bitstring of length t in

enc(i).

We define s hash functions h1, h2, . . . , hs : [n] ! [poly(log n)]. Let also F be an arbitrary

d-regular connected expander on the vertex set [s] for some d = O(1). For j 2 [s], we define

Gj ⇢ [s] as the set of neighbours of j. Then, for every j 2 [n] we define the bit-strings

mi,j = hj(i) � enc(i)j � hG1(j)(i) . . . � hGd(j)(i),

and the following partitions P (j) containg set P(j)
mi,j , where mi,j is a string of Q(t) bits,

such that:

8i 2 [n], i 2 P(j)
mi,j

Then for every partition P (j) we pick a random matrix F(j) using Lemma 2.3.6 with

sparsity k, as well as a random matrix Z(j) using Lemma 2.3.3 with sparsity k and failure

probability 1
poly(log n) . Each of these matrices has O(k log(2O(t)

)) = O(kt) = O(k log log n)

rows. The total number of rows is O(sk log log n) = O(k log n). Then our sensing matrix is

the vertical concatenation of F(1),Z(1), . . . ,F(s),Z(s).

Decoding Algorithm: For every j 2 [s] we run the decoding algorithm of Lemma 2.3.6

on matrix F(j) to obtain a list Lj of size O(k) such that every “heavy” set of P (j) is included.
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The running time in total is m · k · poly(log n) = poly(log n). For every j 2 [s], we now have

that:

• With probability 1/poly(log n), hj perfectly hashes every P(j)
mi,j for every i 2 H(x, k).

• With probability 1/poly(log n), for every i⇤ 2 H(x, k), kx
P(j)
mi,j

k2 � 9
10kx�kk2.

• With probability 1/poly(log n), the decoding procedure on F(j) succeeds. This follows

by taking a union bound over the events of the previous two bullets and the failure

probability guarantee of Lemma 2.3.6 in our instance.

We call by “name” of P(j)
mi,j the O(log log n)-length substring of bits of mi,j, which corre-

spond to the bits of hj(i). We then filter out vertices in layer j, by keeping only those that

have unique names. Our next step is to point-query every set z 2 Lj using the matrices

Z(j) and Theorem 2.3.3 and keep the largest O(k) coordinates; this is the difference with

[LNNT16], since we can implement only one-bit point query. Now we let G be the graph

created by including the at most (d/2)Âs
j=1 Lj edges suggested by the z’s across all Lj,

where we only include an edge if both endpoints suggest it. Now the algorithm and analysis

proceeds exactly as [LNNT16].
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Chapter 3

Sparse Fourier Transform

3.1 (Nearly) Sample Optimal Sparse Fourier Transform in Any Di-

mension

3.1.1 Preliminaries

For any positive integer n, we use [n] to denote {1, 2, · · · , n}.

We assume that the universe size n = pd for any positive integer p. Our algorithm

facilitates n = Pd
j=1pj for any positive integers p1, . . . , pd, but we decide to present the case

n = pd for ease of exposition; the proof is exactly the same in the more general case. Let

w = e2pi/p where i =
p
�1. We will work with the normalized d-dimensional Fourier

transform

bx f =
1p
n Â

t2[p]d
xt · w

f>t, 8 f 2 [p]d

and the inverse Fourier transform is

xt =
1p
n Â

f2[p]d
bx f · w

� f>t, 8t 2 [p]d.

For any vector x and integer k, we denote x�k to be the vector obtained by zeroing out

the largest (in absolute value) k coordinates from x.
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3.1.2 Our result

Apart from being dimension-independent and working for any universe size, our algorithm

satisfies `•/`2, which is the strongest guarantee out of the standard guarantees considered

in compressed sensing tasks. A guarantee G1 is stronger than guarantee G2 if for any

k-sparse recovery algorithm that satisfies G1 we can obtain a W(k)-sparse recovery algorithm

that satisfies G2. See also below for a comparison between `•/`2 and `2/`2, the second

stronger guarantee.

Previous work is summarized in Table 3.1. Our result is the following.

Theorem 3.1.1 (main result, informal version). Let n = pd where both p and d are positive

integers. Let x 2 C[p]d . Let k 2 {1, . . . , n}. Assume that R⇤ � kbxk•/kbx�kk2 where logR⇤
=

O(log n) (signal-to-noise ratio). There is an algorithm that takes O(k log k log n) samples from x,

runs in eO(n) time, and outputs a O(k)-sparse vector y such that

kbx� yk•  1p
k
kbx�kk2

holds with probability at least 1� 1/ poly(n).

Comparison between `•/`2 and `2/`2 (or `2/`1). For the sake of argument, we will

consider only the `2/`2 guarantee which is stronger than `2/`1. The `2/`2 guarantee is the

following: for bx 2 Cn one should output a z such that kbx� zk2  Ckbx�kk2, where C > 1 is

the approximation factor. Consider C = 1.1 1, and think of the following signal: for a set S

of size 0.05k we have |bxi| = 2p
k
kbxSk2. Then the all zeros vectors is a valid solution for the

`2/`2 guarantee, since

k~0� bxk22 = kbxSk22 + kbxSk22 = 0.05k · 4
k
kbxSk22 + kbxSk22 = 1.2kbxSk22 < 1.12kbxSk22.

It is clear that since~0 is a possible output, we may not recover any of the coordinates

1This is the case with the RIP based approaches, which obtain `2/`1. In fact many filter-based algorithms
facilitate (1+ e) on the right hand side, with the number of measurements being multiplied by e

�1. By enabling
the same dependence on e

�1 our algorithm facilitates a multiplicative e factor on right hand side of the `•/`2,
which makes it much stronger. Thus, a similar argument can go through.
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Reference Samples Time Filter RIP Guarantee
[GMS05] k logO(d) n k logO(d) n Yes No `2/`2
[CT06] k log6 n poly(n) No Yes `2/`1
[RV08] k log2 k log(k log n) log n eO(n) No Yes `2/`1
[HIKP12a] k logd n log(n/k) k logd n log(n/k) Yes No `2/`2
[CGV13] k log3 k log n eO(n) No Yes `2/`1
[IK14] 2d log dk log n eO(n) Yes No `•/`2
[Bou14] k log k log2 n eO(n) No Yes `2/`1
[HR16] k log2 k log n eO(n) No Yes `2/`1
[Kap16] 2d2k log n log log n 2d2k logd+3 n Yes No `2/`2
[KVZ19] k3 log2 k log2 n k3 log2 k log2 n Yes Yes Exactly k-sparse
Theorem 3.1.1 k log k log n eO(n) No No `•/`2

Table 3.1: n = pd. We ignore the O for simplicity. The `•/`2 is the strongest possible guarantee, with `2/`2
coming second, `2/`1 third and exactly k-sparse being the less strong. We note that [CT06, RV08, CGV13,
Bou14, HR16] obtain a uniform guarantee, i.e. with 1� 1/poly(n) they allow reconstruction of all vectors;
`•/`2 and `2/`2 are impossible in the uniform case [CDD09]. We also note that [RV08, CGV13, Bou14,
HR16] give improved analysis of the Restricted Isometry property; the algorithm is suggested and analyzed
(modulo the RIP property) in [BD08]. The work in [HIKP12a] does not explicitly state the extension to the
d-dimensional case, but can easily be inferred from the arguments. [HIKP12a, IK14, Kap16, KVZ19] work
when the universe size in each dimension are powers of 2. We also assume that the signal-to-noise ratio is
bounded by a polynomial of n, which is a standard assumption in the sparse Fourier transform literature
[HIKP12a, IK14, Kap16, Kap17, LN19].

in S, which is the set of “interesting” coordinates. On the other hand, the `•/`2 guarantee

does allow the recovery of every coordinate in S. This is a difference of recovering all 0.05k

versus 0 coordinates. From the above discussion, one can conclude in the case where there

is too much noise, `2/`2 becomes much weaker than `•/`2, and can be even meaningless.

Thus, `•/`2 is highly desirable, whenever it is possible. The same exact argument holds for

`2/`1.

3.1.3 Summary of previous Filter function based technique

One of the two ways to perform Fourier sparse recovery is by trying to implement arbitrary

linear measurements, with algorithms similar to the ubiquitous CountSketch [CCF02].

In the general setting CountSketch hashes every coordinate to one of the O(k) buckets,

and repeats O(log n) times with fresh randomness. Then, it is guaranteed that every heavy

coordinate will be isolated, and the contribution from non-heavy elements is small. To
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implement this in the Fourier setting becomes a highly non-trivial task however: one gets

access only to the time-domain but not the frequency domain. One natural way to do

this is to exploit the convolution theorem and find a function which is sparse in the time

domain and approximates the indicator of an interval (rectangular pulse) in the frequency

domain; these functions are called (bandpass) filters. Appropriate filters were designed in

[HIKP12a, HIKP12b]: they were very good approximations of the rectangular pulse, i.e. the

contribution from elements outside the passband zone contributed only by 1/ poly(n) their

mass. These filters had an additional log n factor (in one dimension) in the sparsity of the

time domain and they are sufficient for the purposes of [HIKP12a], but in high dimensions

this factor becomes logd n. Filters based on the Dirichlet kernel give a better dependence in

terms of sparsity and dimension (although still an exponential dependence on the latter),

but the leak to subsequent buckets, i.e. coordinates outside the passband zone contribute

a constant fraction of their mass, in contrast to the filter used in [HIKP12a]. Thus one

should perform additional denoising, which is a non-trivial task. The seminal work of

Indyk and Kapralov [IK14] was the first that showed how to perform sparse recovery with

these filters, and then Kapralov [Kap16, Kap17] extended this result to run in sublinear time.

We note, that any filter-based approach with filters which approximate the `• box, suffers

from the curse of dimensionality. [KVZ19] devised an algorithm which avoids the curse of

dimensionality by using careful aliasing, but it works in the noiseless case and has a cubic

dependence on k.

3.1.4 RIP property-based algorithms: a quick overview

We say the matrix A 2 Cm⇥n satisfies RIP (Restricted Isometry Property [CT05]) of order k

if for all k-sparse vectors x 2 Cn we have kAxk22 ⇡ kxk22. A celebrated result of Candes and

Tao [CT06] shows that Basis Pursuit (`1 minimization) suffices for sparse recovery, as long

as the samples from the time domain satisfy RIP. In [CT06] it was also proved using generic

chaining that random sampling with oversampling factor O(log6 n) gives RIP property for

any orthonomal matrix with bounded entries by 1/
p
n. Then [RV08] improved the bound to
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O(k · log2 k · log(k log n) · log n) and [CGV13] improved it to O(k · log3 k · log n). Subsequent

improvement by Bourgain [Bou14] has lead to O(k log k · log2 n) samples, improved by

Haviv and Regev to O(k log2 k · log n)[HR16]. The fastest set of algorithms are iterative

ones: for example Iterative Hard Thresholding [BD09a] or CoSaMP [NT09b] run O(log n)

iterations2 and each iteration takes eO(n) time.

We note the very recent lower bound of [Rao19]: a subsampled Fourier matrix that

satisfies the RIP properties should have W(k log k · d) rows3. This bound is particularly

useful in high dimensions, since it deteriorates to a trivial bound in low dimensions. We

still believe though that a bound of W(k log k log n) should hold in all dimensions. Thus,

what remains is to obtain the `2/`2 guarantee by giving a tighter analysis, and removing

the one log k factor to match the lower bound, but our algorithm already allows Fourier

sparse recovery with these number of samples, even with a stronger guarantee.

3.1.5 Overview of our technique

Let x 2 C[p]d denote our input signal in the time domain. In the following we assume the

knowledge of µ =

1p
k
kbx�kk2 and R⇤ which is an upper bound of kbxk•/µ, and bounded by

poly(n). These are standard assumption [HIKP12a, IK14, Kap16, Kap17, LN19] in the sparse

Fourier transform literature. The bound on R⇤ is useful for bounding the running time and

in any of [HIKP12a, IK14, Kap16, Kap17, LN19] a log n can be substituted by logR⇤ in the

general case, which is also the case for our algorithm. We note that our algorithm will be

correct with probability 1� 1/ poly(n) whenever R⇤ < 2n100 ; this is fine for every reasonable

application.

Consider the simplest scenario: d = 1, p is a prime number and a 1-sparse signal bx

which is 1 on some frequency f ⇤. From a sample xt in the time-domain what would be the

2To be precise, their running time is logarithmic in the signal-to-noise ratio, but we assumed throughtout
this subchapter that this quantity is polynomial in n.

3[BLLM19] independently gives a similar bound for d = log n.
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most reasonable way to find f ⇤? For every f 2 [p] we would compute

p
nw

f txt =
p
nw

f t · 1p
n Â

f 02[p]
w

� f 0t
bx f 0 = w

( f� f ⇤)t,

and keep, for t 6= 0, the frequency that gives a real number. Since ( f � f ⇤)t will be zero only

for f = f ⇤, we are guaranteed correct recovery. In the noisy and multi-dimensional case

or p is an arbitrary integer, however, this argument will not work, because of the presence

of contribution from other elements and the fact that ( f � f ⇤)>t can be zero modulo p for

other frequencies apart from f . However, we can take a number of samples t and average
p
nw

f>t, and hope that this will make the contribution from other frequencies small enough,

so that we can infer whether f corresponds to a heavy coordinate or not. More specifically,

we pick a list T of size O(k) uniformly at random from [p]d and compute
p
n

|T| Â
t2T

w

f>txt

for all frequencies f . We show that if |T| = O(k) our estimator is good on average (and

later we will maintain O(log n) independent instances and take the median to make sure

with probability 1� 1/ poly(n) the estimators for all the frequencies are good), and in fact

behaves like a crude filter, similarly to the ones used in [IK14], in the sense that every

coordinate contributes a non-trivial amount to every other coordinate. However, these

estimators do not suffer from the curse of dimensionality and our case is a little bit different,

requiring a quite different handling. The main reason is that in contrast to the filters used in

[IK14], there is not an easy way to formulate an isolation argument from heavy elements

that would allow easy measurement re-use, like Definition 5.2 and Lemma 5.4 from [IK14].

Buckets induced by filter functions have a property of locality, since they correspond to

approximate `• boxes (with a polynomial decay outside of the box) in [p]d: the closer two

buckets are the more contribute the elements of one into the other. Our estimators on the

other side do not enjoy such a property. Thus, one has to go via a different route.

In what follows, we will discuss how to combine the above estimators with an iterative

loop that performs denoising, i.e. removes the contribution of every heavy element to other
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heavy elements.

We first implement a procedure which takes O(k log n) uniform random measurements

from x and has the guarantee that for any n � µ any y 2 C[p]d where kbx � yk•  2n

and y is independent from the randomness of the measurements, the procedure outputs a

O(k)-sparse z 2 C[p]d such that kbx� y� zk•  n with probability 1� 1/ poly(n).

Lemma 3.1.2 (LinfinityReduce procedure/data structure, informal). Let µ =

1p
k
kbx�kk2,

and n � µ. Let T (0) be a list of O(k log n) i.i.d. elements in [p]d. Let S be top O(k) coordinates in

bx. There is a procedure that takes {xt}t2T , y 2 C[p]d and n as input, runs in eO(n) time, and outputs

z 2 C[p]d so that if kbx � yk•  2n, supp(y) ✓ S and y is independent from the randomness

of T (0), then kbx � y � zk•  n and supp(z) ✓ S with probability 1� 1/ poly(n) under the

randomness of T (0).

Namely, we can take O(k log n) measurements and run the procedure in Lemma 3.1.2 to

reduce (the upper bound of) the `• norm of the residual signal by half. We call the procedure

in Lemma 3.1.2 LinfinityReduce procedure. More generally, we can take O(H · k log n)

measurements and run the LinfinityReduce procedure H times to reduce the `• norm

of the residual signal to 1/2H of its original magnitude, with failure probability at most

1/ poly(n). This is because if n � 2Hµ and kbx � yk•  n, then we can proceed in H

iterations where in the h-th iteration (h 2 [H]) we can take O(k log n) fresh measurements

from x and run the LinfinityReduce procedure to make the `• norm of the residual signal

at most 2�h
n. Note that if we set H = logR⇤, we have already obtained a recovery algorithm

taking O(k log n logR⇤
) measurements, because we can drive down (the upper bound of)

the `• norm of the residual signal from kbxk• to µ in logR⇤ iterations.

O(k log n) measurements for k = O(log n)

We first discuss a measurement reuse idea that leads us to a sparse recovery algorithm

(Algorithm 8) taking O(k log n) measurements for k = O(log n). We set H = 5, and let

T = {T (1), . . . , T (H)}, where each T (h) is a list of O(k log n) i.i.d. elements in [p]d. Note that
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T (1), . . . , T (H) are independent. In our sparse Fourier recovery algorithm, we will measure

xt for all t 2 T .

In a nutshell, our approach finely discretizes the space of possible trajectories the

algorithm could evolve, and carefully argues about the correctness of the algorithm by

avoiding the intractable union-bound over all trajectories.

Recovery algorithm. The recovery algorithm proceeds in logR⇤ � H + 1 iterations, where

each iteration (except the last iteration) the goal is to reduce the upper bound of `• norm of

the residual signal by half. Initially, the upper bound is R⇤. It is important to note that we

use the same measurements T = {T (1), . . . , T (H)} in all of these logR⇤ � H + 1 iterations.

In the following, we will describe one iteration of the recovery algorithm. Let y 2

C[p]d denote the sparse vector recovered so far, and let the upper bound of kbx � yk• be

2n. Running the LinfinityReduce procedure H times where in the h-th time we use

measurements in T (h), we obtain a O(k)-sparse z such that with probability 1� 1/ poly(n),

kbx� y� zk•  21�H
n  0.1n (we call such z a desirable output by the LinfinityReduce

procedure). Instead of taking y + z as our newly recovered sparse signal, for each f 2

supp(y+ z), we project y f + z f to the nearst points in G0.6n

:= {0.6n(x+ yi) : x, y 2 Z} and

assign to y0f , where y0 denotes our newly recovered sparse signal. For all f 62 supp(y+ z),

we let y0f = 0.

To simplify our exposition, here we introduce some notations. We call G0.6n

a grid of side

length 0.6n, and we generalize the definition to any side length. Namely, for any rg > 0, let

grid Grg := {rg(x+ yi) : x, y 2 Z}. Moreover, we define Prg : C ! Grg to be the mapping

that maps any element in C to the nearest element in Grg . Now we can write y0 as

y0f =

8

>

>

<

>

>

:

P0.6n

(y f + z f ), if f 2 supp(y+ z);

0, if f 62 supp(y+ z).

At the end of each iteration, we assign y0 to y, and shrink n by half. In the last iteration,

we will not compute y0, instead we output y+ z. We present the algorithm in Algorithm 8.
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Algorithm 8 Fourier sparse recovery by projection, O(k log n) measurements when k =

O(log n)
1: procedure FourierSparseRecoveryByProjection(x, n, k, µ,R⇤) . Section 3.1.5
2: Require that µ =

1p
k
kbx�kk2 and R⇤ � kbxk• /µ

3: H  5, n  µR⇤/2, y  ~0 . y 2 C[p]d refers to the sparse vector recovered so far
4: Let T = {T (1), · · · , T (H)} where each T (h) is a list of i.i.d. uniform samples in [p]d
5: while true do
6: n

0  21�H
n

7: Use {xt}t2T to run the LinfinityReduce procedure (in Lemma 3.1.2) H times
(use samples in T (h) for each h 2 [H] ), and finally it finds z so that kbx� y� zk•  n

0

8: if n

0  µ then return y+ z . We found the solution
9: y0  ~0
10: for f 2 supp(y+ z) do
11: y0f  P0.6n

(y f + z f ) . We want kbx� y0k•  n and the depend-
12: end for . ence between y0 and T is under control
13: y  y0, n  n/2
14: end while
15: end procedure

Analysis. We analyze y0 conditioned on the event that kbx � y � zk•  0.1n (i.e. z is

a desirable output by the LinfinityReduce procedure, which happens with probability

1� 1/ poly(n)). We will prove that y0 has two desirable properties: (1) kbx� y0k•  n; (2)

the dependence between y0 and our measurements T is under control so that after taking y0

as newly recovered sparse signal, subsequent executions of the LinfinityReduce procedure

with measurements T still work with good probability. Property (1) follows from triangle

inequality and the fact that kbx � (y+ z)k•  0.1n and k(y+ z)� y0k•  0.6n. We now

elaborate on property (2). We can prove that for any f 2 [p]d,

y0f 2
�

P0.6n

(

bx f + 0.1n(a + bi)) : a, b 2 {�1, 1}
 

.

Let S denote top 26k coordinates (in absolute value) of bx. We can further prove that for any

f 2 S, y0f = 0. Therefore, the total number of possible y0 is upper bounded by 4|S| = 4O(k).

If k = O(log n), we can afford union bounding all 4O(k)
= poly(n) possible y0, and prove

that with probability 1� 1/ poly(n) for all possible value of y0 if we take y0 as our newly

recovered sparse signal then in the next iteration the LinfinityReduce procedure with
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measurements T gives us a desirable output.

Sufficient event. More rigorously, we formulate the event that guarantees successful

execution of Algorithm 8. Let E1 be the event that for all O(logR⇤
) possible values of

n 2 {µR⇤
2 , µ

R⇤
4 , . . . , µ2

H�1}, for all possible vector y where y f = 0 for f 2 S and y f 2

{P0.6n

(

bx f + 0.1n(a + bi)) : a, b 2 {�1, 1}} for f 2 S (we also need to include the case that

y =

~0 for the success of the first iteration), running the LinfinityReduce procedure (in

Lemma 3.1.2) H times (where in the h-th time measurements {xt}t2T (h) are used to reduce

the error from 22�h
n to 21�h

n) finally gives z so that kbx� y� zk•  21�H
n. The randomness

of E1 comes from T = {T (1), . . . , T (H)}.

First, event E1 happens with probability 1 � 1/ poly(n). This is because there are

4O(k) logR⇤ possible combinations of n and y to union bound, and each has failure probability

at most 1/ poly(n). For k = O(log n), and any R⇤ < 2n100 this gives the desired result.

Second, conditioned on event E1 happens, Algorithm 8 gives correct output. This can be

proved by a mathematical induction that in the t-th iteration of the while-true loop in

Algorithm 8, kbx� yk•  2�t
µR⇤.

O(k log k log n) measurements for arbitrary k

Using random shift to reduce projection size. We remark that in the analysis of the

previous recovery algorithm, if we can make sure that every y f + z f has only one possible

outcome when projecting to the grid G0.6n

, then we no longer need to union bound 4O(k)

events. However, if bx f is very close to a grid point in G0.6n

(or bx f 2 G0.6n

), then no matter

how close y f + z f and bx f are, P0.6n

(y f + z f ) will have 4 possible values.

To address this, we introduce random shift, whose property is captured by Lemma 3.1.3.

To simplify notation, for any rb > 0 and c 2 C we define box B•(c, rb) := {c+ rb(x+ yi) :

x, y 2 [�1, 1]}. For any S ✓ C, let Prg(S) = {Prg(c) : c 2 S}.

Lemma 3.1.3 (property of a randomly shifted box, informal). If we take a box of side length 2rb

and shift it randomly by an offset in B•(0, rs) (or equivalently, [�rs, rs]⇥ [�rs, rs]) where rs � rb,

120



and next we round every point inside that shifted box to the closest point in Grg where rg � 2rs, then

with probability at least (1� rb/rs)2 everyone will be rounded to the same point.

In the following, we present a sparse Fourier recovery algorithm that incorporates the

random shift idea. The algorithm takes O(k log k log n) measurements. We set H = O(log k)

and take measurements of T = {T (1), . . . , T (H)} , where T (h) is a list of O(k log n) i.i.d

elements in [p]d. Note that T (1), . . . , T (H) are independent, and the choice of H is different

from Section 3.1.5.

In a nutshell, our approach finely discretizes the space of possible trajectories the

algorithm could evolve; in contrast to the case of k = O(log n), the number of trajectories

becomes much larger. For that, we perform random shifting after the samples are taken,

such that the number of trajectories is pruned, and we need to argue for a much smaller

collection of events. We note that we make the decoding algorithm be randomized: the

randomness in previous algorithms was present only when taking samples, and the rest of

the algorithm was deterministic. However, here we need randomness in both cases, and

that helps us prune the number of possible trajectories. To the best of our knowledge, this is

a novel argument and approach, and might be helpful for future progress in the field.

Recovery algorithm. Similar to the k = O(log n) case (Section 3.1.5), we assume that we

have already obtained a O(k)-sparse y 2 C[p]d such that kbx� yk•  2n and y is “almost”

independent from T . We show how to obtain y0 2 C[p]d such that kbx � y0k•  n with

probability 1� 1/ poly(n) and y0 is “almost” independent from T . The main idea is we

first run LinfinityReduce procedure H = O(log k) times to get an O(k)-sparse z 2 C[p]d

such that kbx� y� zk•  1
220kn. Then we repeatedly sample a uniform random shift s 2 C

(where ksk•  10�3
n; here we consider complex numbers as 2D vectors) until for every

f 2 supp(y+ z), all the points (or complex numbers) of the form y f + z f + s+ a+ bi where

a, b 2 [� n

220k ,
n

220k ] round to the same grid point in G0.04n

. Finally, for every f 2 supp(y+ z),

we assign P0.04n

(y f + z f + s) to y0f ; all remaining coordinates in y0 will be assigned to 0. We

present an informal version of our algorithm in Algorithm 9, and defer its formal version to
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Algorithm 9 Fourier sparse recovery by random shift and projection (informal version)

1: procedure FourierSparseRecovery(x, n, k, µ,R⇤) . Theorem 3.1.1, n = pd
2: Require that µ =

1p
k
kbx�kk2 and R⇤ � kbxk• /µ

3: H  O(log k), n  µR⇤/2, y  ~0 . y 2 C[p]d refers to the sparse vector recovered
so far

4: Let T = {T (1), · · · , T (H)} where each T (h) is a list of i.i.d. uniform samples in [p]d
5: while true do
6: n

0  1
220kn

7: Use {xt}t2T to run the LinfinityReduce procedure (in Lemma 3.1.2) H times
(use samples in T h for each h 2 [H] ), and finally it finds z so that kbx� y� zk•  n

0

8: if n

0  µ then return y+ z . We found the solution
9: repeat
10: Pick s 2 B•(0, 10�3

n) uniformly at random
11: until 8 f 2 supp(y+ z), |P0.04n

(B•(y f + z f + s, n0))| = 1
12: y0  ~0
13: for f 2 supp(y+ z) do
14: y0f  P0.04n

(y f + z f + s) . We want kbx� y0k•  n and the depend-
15: end for . ence between y0 and T is under control
16: y  y0, n  n/2
17: end while
18: end procedure

the appendix.

Analysis. Now we analyze the above approach. First, we have the guarantee that kbx�

y0k•  n. Moreover, note that by our choice of s, for every f 2 supp(y+ z), y f + z f + s

and bx f + s round to the same grid point in G0.04n

. Therefore, for the new vector y0 we have

recovered, we “hide” the randomness in T , and the randomness only leaks from failed

attempts of the shifts. In the following, we show that each attempt of shift succeeds with

probability 1
2 .

We can restate the procedure of choosing s to be:

repeatedly sample s ⇠ B•(0, 10�3
n),

until for all f 2 supp(y+ z),
�

�

�

P0.04n

⇣

B•
�

y f + z f + s,
n

220k
�

⌘

�

�

�

= 1.

Note that | supp(y+ z)| = O(k). Let us say that we can always guarantee that | supp(y+

z)|  50k. By Lemma 3.1.3 where we let rb =

n

220k , rs = 10�3
n and rg = 0.04n, for
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f 2 supp(y+ z),

Pr

"

�

�

�

P0.04n

⇣

B•
�

y f + z f + s,
n

220k
�

⌘

�

�

�

= 1

#

� (1� rb
rs
)

2 � 1� 1
100k

.

By a union bound over f 2 supp(y + z), the probability is at least 1
2 that for all f 2

supp(y+ z), |P0.04n

(B•(y f + z f + s, n

220k ))| = 1.

Therefore, with probability 1� 1/ poly(n), we will only try O(log n) shifts. We can apply

a union bound over O(log n) possible shifts, and prove that with probability 1� 1/ poly(n)

if taking y0 as our new y, and shrinking n by half, the LinfinityReduce procedure will work

as desired as if there is no dependence issue.

Sufficient event. Let S be top O(k) coordinates in bx. Let L = O(logR⇤
) denote the

number of iterations in Algorithm 9. For ` 2 [L], let n` = 2�`
µR⇤. For ` 2 [L � 1], let

s(a)` be the a-th uniform randomly sampled from B•(0, 10�3
n`) as appeared on Line 10 in

Algorithm 9. For the sake of analysis, we assume that Algorithm 9 actually produces an

infinite sequence of shifts s(1)` , s(2)` , . . .. We formulate the event that guarantees successful

execution of Algorithm 9. We define event E2 to be all of the following events hold.

1. For all ` 2 [L� 1], there exists a 2 [10 log n] so that for all f 2 S,
�

�

�

�

P0.04n`

✓

B•(bx f + s(a)` ,
1

100k
n`)

◆

�

�

�

�

= 1.

2. For ` = 1, if we run the LinfinityReduce procedure H times with y =

~0 and measure-

ments in T , we get z such that kbx� zk•  21�H
n1 and supp(z) ✓ S.

3. For all ` 2 {2, . . . , L}, for all a 2 [10 log n], if we run the LinfinityReduce procedure H

times with y = x where

x f =

8

>

>

<

>

>

:

P0.04n`
(

bx f + s(a)`�1), if f 2 S;

0, if f 2 S.

then we get z such that kbx� y� zk•  21�H
n` and supp(y+ z) ✓ S.
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We can prove that event E2 happens with probability 1� 1/ poly(n). Moreover, we can

prove that conditioned on event E2 Algorithm 9 gives correct output. We defer both proofs

in the appendix.

3.1.6 Algorithm for d-dimensional Sparse Fourier Transform

In this section, we will give a Fourier sparse recovery algorithm that takes O(k log k log n)

measurements with “`•/`2” guarantee. We assume the knowledge of µ =

1p
k
kbx�kk2. In

fact, a constant factor approximation suffices, but we prefer to assume exact knowledge

of it in order to simplify exposition. All of the arguments go through in the other case,

with minor changes in constants. We also assume we know R⇤ so that R⇤ � kbxk• /µ. We

assume that logR⇤
= O(log n). For larger logR⇤

= O(poly(n)), our algorithm will still

work, but the decoding time will be worse by a factor of logR⇤

log n . Note that our assumptions

on µ and R⇤ are standard. For example, [IK14] make the same assumption. We assume that

we can measure the signal x in the time domain, and we want to recover the signal bx in the

frequency domain.

In our algorithm, we will use µ as a threshold for noise, and we will perform logR⇤

iterations, where in each iteration the upper bound of `• norm of the residual signal (in

the frequency domain) shrinks by half. In Section 3.1.7, we give some definitions that will

be used in the algorithm. Then we present our new algorithm for d-dimension Fourier

sparse recovery in Section 3.1.8. In Section 3.1.9, we prove the correctness of the proposed

algorithm.

3.1.7 Notations

For a subset of samples (or measurements) {xt}t2T from the time domain, where T is a list

of elements in [p]d, we define bx[T] in Definition 3.1.4 as our estimation to bx.

Definition 3.1.4 (Fourier transform of a subset of samples). Let x 2 C[p]d . For any T which is
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O x

y

rg

rc

B1(c, r)A1 A2

A4 A3

A0

Figure 3.1: Illustration of box B•(c, r) and grid Grg . Box B•(c, r) refers to all the points in the square
centered at c with side length 2r. Grid Grg refers to all the solid round points, and the distance between origin
O and A0 is rg. Note that the dashed lines are decision boundaries of the projection Prg , and all the points
inside a minimum cell separated by the dashed lines are mapped (by Prg ) to the same grid point in Grg (which
is the center of the cell). We have Prg(c) = A1 and Prg(B•(c, r)) = {A1, A2, A3, A4}.

a list of elements in [p]d, for any f 2 [p]d, we define

bx[T]f =

p
n

|T| Â
t2T

w

f>txt.

In order to reuse samples across different iterations where we drive down the upper

bound of the residual signal by half, in each iteration after we obtain estimations to heavy

hitters (or equivalently large coordinates), instead of subtracting the estimates directly, we

need to “hide” the randomness leaked by the samples. We interpret each estimate (which

is a complex number) as a point on a 2-dimension plane, and hide the randomness by

rounding the estimate to the nearest grid point (where the side length of the grid is chosen

to be a small constant fraction of the target `• norm of the residual signal in the frequency

domain), which we call “projection onto grid”. In Definition 3.1.5, we formally define

box and grid, and in Definition 3.1.6 we define projection to grid. We illustrate these two

definitions in Figure 3.1.
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Definition 3.1.5 (box and grid). For any c 2 C and r � 0, we define box B•(c, r) ✓ C as

B•(c, r) = {c+ x+ yi : x, y 2 [�r, r]}.

Namely, if we consider complex numbers as points on 2D plane, box B•(c, r) refers to `• ball

with radius r centered at c.

For any r > 0, we define grid Gr ✓ C as

Gr = {xr+ yri : x, y 2 Z}.

Definition 3.1.6 (projection onto grid). For any r > 0, we define Pr to be a maping from C to Gr,

so that for any c 2 C,

Pr(c) = argmin
c02Gr

|c� c0|,

where we break the tie by choosing the one with minimum |c0|. As a natural generalization, For

C ✓ C, we define

Pr(C) = {Pr(c) : c 2 C}.

3.1.8 Algorithm

We present our new sparse Fourier recovery algorithm in Algorithm 10. Its auxiliary function

LinfinityReduce is in Algorithm 11. Important constants are summarized in Table 3.2.

In Algorithm 10, we define “bucket size” B = O(k) and number of repetitions R =

O(log n). For each r 2 [R], we choose Tr to be a list of B independent and uniformly

random elements in [p]d. We will measure xt for all t 2 [r2[R]Tr, and use LinfinityReduce

in Algorithm 11 to locate and estimate all the “heavy hitters” of the residual signal so that if

we substract them then the `• norm of the new residual signal shrinks by half. The input to

LinfinityReduce is a signal x 2 C[p]d in the time domain (but we can only get access to xt

where t 2 [r2[R]Tr), a sparse vector y 2 C[p]d in the frequency domain that we have recovered

so far, and n � µ such that kbx� yk•  2n where we will refer bx� y as the currect residual

signal (in the frequency domain). It is guaranteed that LinfinityReduce(x, n, y, {Tr}Rr=1, n)
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· · ·

(a) h = 0 (b) h = 1 (c) h = H

Figure 3.2: Illustration of the behavior of Line 16 to Line 20 in Algorithm 10. For any f 2 [p]d, we draw
box B•(y(`�1)

f + z f , 21�h
n`) after h iterations of the for loop between Line 17 and Line 19 in Algorithm 10,

where h 2 {0, 1, . . . ,H}. Conditioned on LinfinityReduce is correct, for every h 2 {0, 1, . . . ,H}, after
h-th iteration we have bx f 2 B•(y(`�1)

f + z f , 21�h
n`). When h = 0, i.e. before the loop between Line 17 and

Line 19 starts, we know that bx f 2 B•(y(`�1)
f , 2n`) as depicted by (a). After each iteration in h, the radius of

the box shrinks by half (and its center might change). Finally after H iterations, as depicted by (c), we obtain
z(`�1) such that bx f 2 B•(y(`�1)

f + z(`)f , 21�H
n`).

returns a O(k)-sparse z so that kbx� y� zk  n with probability 1� 1/ poly(n).

Algorithm 10 in total maintains H = O(log k) independent copies of such error-reduce

data structures, where in the h-th copy it measures T (h)
= {T (h)

r }r2[R] for h 2 [H]. We

denote T = {T (h)}r2[R]. If logR⇤  H, then we can simply use different T (h) in different

iterations. In that case L = 1 and H = logR⇤ in Algorithm 10. We will get z(1) on Line 20

such that kbx� y(0) � z(1)k•  µ (we will prove in the analysis this holds with probability

1� 1/ poly(n)) where y(0) = 0, and return z(1) + y(0) on Line 22.

If logR⇤ > H, we have to reuse the samples. We proceed in L iterations (in the loop

between Line 14 and Line 33 in Algorithm 10), where L = logR⇤ � H + 1. For ` 2 [L], as

defined in Line 15, n` = 2�`
µR⇤ refers to the target `• of the residual signal in the `-th

iteration (namely, for ` 2 [L� 1] we want to obtain y(`) so that kbx� y(`)k•  n`). In the

`-th iteration where ` 2 [L], by using the samples in T = {T (h)}h2H (Line 16 to Line 20),

the algorithm tries to get z(`) so that kbx� y(`�1) � z(`)k•  21�H
n`. The intuition on the

behavior of Line 16 to Line 20 is depicted in Figure 3.2.

If ` = L the algorithm will return y(L�1)
+ z(L) as in Line 22; otherwise, the algorithm will
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· · ·

(a) a failed attempt (b) another failed attempt (c) a successful attempt

Figure 3.3: Illustration of the iteration between Line 25 and Line 28 in Algorithm 10. The round solid points
represent grid points in G

bn

, and the dashed lines represent decision boundaries of P
bn`

. In this example

we have | supp(y(`�1)
+ z(`))| = 3, and the dotted squares represent boxes B•(y(`�1)

f + z(`)f , 21�H
n`) for

f 2 supp(y(`�1)
+ z(`)). The algorithm repeatedly samples a random shift s ⇠ B•(0, an`), until all the

shifted boxes {B•(y(`�1)
f + z(`)f , 21�H

n`) + s} f2supp(y(`�1)
+z(`)) do not intersect with the dashed lines (i.e.

decision boundaries of P
bn`

). In the figure, we color a shifted box in green if it does not intersect with dashed
lines, and color in red otherwise. After a series of failed attempts from (a) to (b), we finally have a successful
attempt in (c).

try to compute y(`) based on y(`�1)
+ z(`). In Line 25 to Line 28, the algorithm repeatedly

samples a uniform random shift s` 2 B•(0, an`) (where a 2 (0, 1) is a small constant

chosen in Table 3.2) until the shift is good, where shift s` is good if and only if for each

f 2 supp(y(`�1)
+ z(`)), all the points in B•(y(`�1)

+ z(`) + s`, 21�H
n`) (i.e. the box obtained

by applying shift s` to the box B•(y(`�1)
+ z(`), 21�H

n`)) project to the same grid point in G
bn`

.

We depict the process of obtaining the shift s` in Figure 3.3. It is crucial to note that if the

shift s` is good and the vector z(`) we get is desirable (namely kbx� y(`�1) � z(`)k•  21�H
n`),

then for each f 2 supp(y(`�1)
+ z(`)), P

bn`
(y(`�1)

f + z(`)f + s`) = P
bn`

(

bx f + s`).

On Line 31, we assign P
bn`

(y(`�1)
f + z(`)f + s`) to y(`)f . Because b is a small constant,

we still have the guarantee that kbx � y(`)k•  n`. Moreover, by assigning P
bn`

(y(`�1)
f +

z(`)f + s`) = P
bn`

(

bx f + s`) to y(`)f , we “hide” the randomness in T = {T (h)}h2[H]

. Now

the randomness in T only leaks from failed attempts of the shifts. For analysis purpose,

we maintain a counter a` for ` 2 [L� 1] recording the number of attempts until we have

sampled a good one. By our choice of parameters, we can prove that with high probability

a`  10 log n for each ` 2 [L� 1]. Thus intuitively the leaked randomness is under control,
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Algorithm 10 Fourier sparse recovery by random shift and projection

1: procedure FourierSparseRecovery(x, n, k, µ,R⇤) . Theorem 3.1.19, n = pd
2: Require that µ =

1p
k
kbx�kk2 and R⇤ � kbxk• /µ . R⇤ is a power of 2

3: B  CB · k . CB is a constant defined in Table 3.2
4: R  CR · log n . CR is a constant defined in Table 3.2
5: H  min{log k+ CH, logR⇤} . CH is a constant defined in Table 3.2
6: for h = 1 ! H do
7: for r = 1 ! R do
8: T (h)

r  a list of B i.i.d elements in [p]d
9: end for
10: T (h)  {T (h)

r }Rr=1

11: end for . We will measure xt for t 2 [h2[H],r2[R]T
(h)
r

12: y(0)  ~0 . y(0) 2 Cn

13: L  logR⇤ � H + 1
14: for ` = 1 ! L do
15: n`  2�`

µR⇤ . Target `• of the residual signal in iteration t
16: z  ~0 . z is a temporary variable used to compute z(`)
17: for h = 1 ! H do
18: z  z+ LinfinityReduce(x, n, y(`�1)

+ z, T (h), 21�h
n`)

19: end for
20: z(`)  z . We want kbx� y(`�1) � z(`)k•  21�H

n`

21: if ` = L then
22: return y(L�1)

+ z(L)
23: end if
24: a  0 . A temporary counter maintained for analysis purpose only
25: repeat
26: Pick s` 2 B•(0, an`) uniformly at random . a 2 (0, 1) is a small constant
27: a  a+ 1 . b in the next line is a small constant where a < b < 0.1
28: until 8 f 2 supp(y(`�1)

+ z(`)), |P
bn`

(B•(y
(`�1)
f + z(`)f + s`, 21�H

n`))| = 1
29: a`  a
30: for f 2 supp(y(`�1)

+ z(`)) do
31: y(`)f  P

bn`
(y(`�1)

f + z(`)f + s`) . We want kbx� y(`)k•  n`

32: end for
33: end for
34: end procedure

and we can formally apply a union bound to prove that with good probability all possible

invocations of LinfinityReduce by our FourierSparseRecovery produce desirable output.
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3.1.9 Analysis

In order to analyze the algorithm, let S ✓ [n] be top CSk coordinates of bx where CS = 26, and

let S = [n] \ S. In order to analyze the performance of LinfinityReduce in Algorithm 11,

we need the following definition.

Definition 3.1.7 (uniform sample). We say t is sampled from [p]d uniformly at random if for each

i 2 [d], we independently sample ti from [p] uniformly at random. We use t ⇠ [p]d to denote it.

Fact 3.1.8. Let w = e2pi/p where p is any positive integer. For a fixed f 2 [p]d \ {~0}, Et⇠[p]d [w
f>t

] =

0.

Proof. Note that Et⇠[p]d [w
f>t

] = ’i2[d] Eti⇠[p][w
fi ti
] by the fact that t1, . . . , td are independent.

Because f 6=~0, there exists i 2 [d] so that fi 6= 0. We have

E
ti⇠[p]

[w

fi ti
] =

1
p

p�1

Â
j=0

(w

fi
)

j

=

1
p
· (w

fi
)

0
(1� (w

fi
)

p
)

1� w

fi

= 0,

where the second step follows from the sum of geometry series where w

fi 6= 1, adn the

third step follow from (w

fi
)

p
= e2pi fi

= 1. Therefore, Et⇠[p]d [w
f>t

] = 0.

We define measurement coefficient as follows:

Definition 3.1.9 (measurement coefficient). For any f 2 [p]d and any T which is a list of

elements in [p]d, we define

c[T]f =

1
|T| Â

t2T
w

f>t.

By definition of c[T]f and d-dimension Fourier transform, we can decompose bx[T]f as

follows.
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Notation Choice Statement Parameter
CB 106 Lemma 3.1.18 B
CR 103 Lemma 3.1.17 R
CH 20 Algorithm 10 H
a 10�3 Algorithm 10 Line 26 shift range
b 0.04 Algorithm 10 Line 28 grid size
CS 26 Lemma 3.1.17, Lemma 3.1.18 |S|

Table 3.2: Summary of important constants.

Lemma 3.1.10 (measurement decomposition). For any f 2 [p]d and any T which is a list of

elements in [p]d,

bx[T]f = Â
f 02[p]d

c[T]f� f 0 bx f 0 .

Proof. We have

bx[T]f =

p
n

|T| Â
t2T

w

f>txt

=

p
n

|T| Â
t2T

w

f>t 1p
n Â

f 02[p]d
w

� f 0>t
bx f 0

=

p
n

|T| Â
t2T

1p
n Â

f 02[p]d
w

( f� f 0)>t
bx f 0

= Â
f 02[p]d

 

1
|T| Â

t2T
w

( f� f 0)>t

!

bx f 0

= Â
f 02[p]d

c[T]f� f 0 bx f 0 ,

where the first step follow by the definition of bx[T]f in Definition 3.1.4, second step follows

by the definition of inverse d-dimensional Fourier transform (see Section 3.1.1), third and

forth step follow by rearranging terms, last step follows by the definition of measurement

coefficients c in Definition 3.1.9.

Let T be a list of i.i.d. samples from [p]d, then the coeffcients c[T]f defined in Defini-

tion 3.1.9 have the following property.

Lemma 3.1.11 (properties of coeffcient c). Let T be a list of B independent and uniform random
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Lemma Meaning
Lemma 3.1.10 measurement decomposition
Lemma 3.1.11 properties of coefficient
Lemma 3.1.12 noise bound
Lemma 3.1.13 guarantee of LinfinityReduce
Lemma 3.1.15 property of a randomly shifted box
Lemma 3.1.17 event E happens
Lemma 3.1.18 correctness of our algorithm

Table 3.3: Summary of Lemmas.

elements in [p]d. Then we have

1. c[T]0 = 1.

2. For any f 2 [p]d \ {0}, ET

h

|c[T]f |2
i

=

1
B .

3. For any f , f 0 2 [p]d, f 6= f 0, ET



c[T]f · c[T]f 0

�

= 0.

Proof. Part 1. By definition of c[T]0 ,

c[T]0 =

1
|T| Â

t2T
w

0·t
= 1.

Part 2. Let T = {t1, . . . , tB}, where ti is independently and uniformly chosen from [p]d.

For any f 2 [p]d \ {0},

E
T

h

|c[T]f |2
i

= E
T



c[T]f · c[T]f

�

=

1
|T|2 ET

2

4 Â
i,j2[B]

w

f>(ti�tj)

3

5

=

1
|T|2

0

@|T|+ E
T

2

4 Â
i,j2[B],i 6=j

w

f>(ti�tj)

3

5

1

A

=

1
|T| +

1
|T|2 Â

i,j2[B],i 6=j
E
T

h

w

f>(ti�tj)
i

=

1
|T| �

1
|T|2 · 0

=

1
|T| =

1
B
,

where the forth step follows by ET[w
f>(ti�tj)

] = Et⇠[p]d [w
f>t

] = 0, in which ET[w
f>(ti�tj)

] =
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Et⇠[p]d [w
f>t

] because i 6= j, ti, tj are independent and uniformly random distributed in [p]d,

ti � tj ⇠ [p]d; Et⇠[p]d [w
f>t

] = 0 follows by by Fact 3.1.8 and f is not a zero vector.

Part 3. For any f , f 0 2 [p]d, f 6= f 0,

E
T



c[T]f · c[T]f 0

�

=

1
|T|2 ET

2

4 Â
i,j2[B]

w

f>ti� f 0>tj

3

5

=

1
|T|2

0

@ Â
i,j2[B],i 6=j

E
T

h

w

f>ti� f 0>tj
i

+ Â
i2[B]

E
T

h

w

( f� f 0)>ti
i

1

A

=

1
|T|2

0

@ Â
i,j2[B],i 6=j

E
ti⇠[p]d

h

w

f>ti
i

E
tj⇠[p]d

h

w

� f 0>tj
i

+ Â
i2[B]

E
ti⇠[p]d

h

w

( f� f 0)>ti
i

1

A

= 0,

where the second step follows from separating diagonal term and off-diagonal terms, the

third step follows from ti and tj are independent, the last step follows from Fact 3.1.8 where

f � f 0 6=~0, and at least one of f and f 0 is not~0.

Let T be a list of independent and uniformly random elements from [p]d. We are going

to measure xt for t 2 T, and take bx[T]f (recall its definition in Definition 3.1.4) as estimate to

bx f . By Lemma 3.1.10, bx[T]f = Â f 02[p]d c
[T]
f� f 0 bx f 0 . The following lemma bounds the contribution

of coordinates from V where V ✓ [p]d \ { f }, namely |Â f 02V c[T]f� f 0 bx f 0 |. When analyzing the

quality of bx[T]f as an approximation to bx f , we consider coordinates in V as noise, and we

usually set V = [p]d \ { f }.

Lemma 3.1.12 (noise bound). For any f 2 [p]d, T which is a list of B i.i.d. samples from [p]d and

V ✓ [n] such that f 62 V,

Pr
T

"

�

�

�

�

�

Â
f 02V

c[T]f� f 0 bx f 0

�

�

�

�

�

� 10p
B
kbxVk2

#

 1
100

.
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Proof. First, we can prove that ET



�

�

�Â f 02V c[T]f� f 0 bx f 0
�

�

�

2
�

=

1
BkbxVk22, because

E
T

2

4

�

�

�

�

�

Â
f 02V

c[T]f� f 0 bx f 0

�

�

�

�

�

2
3

5

= E
T

"

Â
f1, f22V

(c[T]f� f1
bx f1)(c
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f1, f22V
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�

bx f1bx f2
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f 02V

E
T



�

�

�

c[T]f� f 0

�

�

�

2
�

|bx f 0 |2

=

1
B
kbxVk22,

where the third step follows from Lemma 3.1.11 that for f � f1 6= f � f2, ET



c[T]f� f1
c[T]f� f2

�

= 0,

and the last step follows from ET



�

�

�

c[T]f� f 0

�

�

�

2
�

= 1/B in Lemma 3.1.11.

Then the lemma follows from Chebyshev Inequality and the fact that

Var
T

"

�

�

�

�

�

Â
f 02V

c[T]f� f 0 bx f 0

�

�

�

�

�

#

 E
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�
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�
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�

Â
f 02V

c[T]f� f 0 bx f 0

�

�

�

�

�

2
3

5

=

1
B
kbxVk22.

In the next lemma, we show the guarantee of LinfinityReduce in Algorithm 11.

Lemma 3.1.13 (guarantee of LinfinityReduce in Algorithm 11). Let x 2 C[p]d , and n = pd.

Let R = CR log n, and B = CBk. Let CB � 106 and CR � 103. Let µ =

1p
k
kbx�kk2, and n � µ. For

r 2 [R], let Tr be a list of B i.i.d. elements in [p]d. Let z 2 Cn denote the output of

LinfinityReduce(x, n, y, {Tr}Rr=1, n).

Let S be top CSk coordinates in bx, where CS = 26. If kbx � yk•  2n, supp(y) ✓ S and y

is independent from the randomness of {Tr}Rr=1, then with probability 1� 1/ poly(n) under the

randomness of {Tr}Rr=1, kbx � y � zk•  n and supp(z) ✓ S. Moreover, the running time of

LinfinityReduce is O(n log2 n).
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Algorithm 11 Procedure for reducing `• norm of the residual signal

1: procedure LinfinityReduce(x, n, y, {Tr}Rr=1, n) . Lemma 3.1.13
2: Require that kbx� yk•  2n

3: Let w be inverse Fourier transform of y . We have bw = y
4: for r = 1 ! R do
5: for f = 1 ! n do . Implemented by FFT which takes O(n log n) time

6: u f ,r  
p
n

|Tr | Ât2Tr w

f>t
(xt � wt) . w = e2pi/p, u f ,r =

\
(x� w)

[Tr ]
f

7: end for
8: end for
9: for f = 1 ! n do
10: h = medianr2[R]{u f ,r} . Take the median coordinate-wise
11: if |h|  n/2 then
12: z f  h

13: else
14: z f  0
15: end if
16: end for
17: return z . Guarantee kbx� y� zk•  n

18: end procedure

Proof. Note that 8 f 2 S,

|bx f | 
s

kbx�kk22
CSk� k

=

1
5
µ,

where the last step follows from choice of CS.

Let w denote the inverse Fourier transform of y. Note that on Line 6 in Algorithm 11,

for any f 2 [p]d and r 2 [R],

u f ,r =

p
n

|Tr| Â
t2Tr

w

f>t
(xt � wt)

=

\
(x� w)

[Tr ]
f

= Â
f 02[n]

c[Tr ]f� f 0(bx f 0 � y f 0),

where the second step follows by the notation in Definition 3.1.4, and the third step follows

by Lemma 3.1.10. Therefore,

bx f � y f = u f ,r � Â
f 02[p]d\{ f }

c[Tr ]f� f 0(bx f 0 � y f 0), (3.1)
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By Lemma 3.1.12,

Pr
Tr

2

4

�

�

�

�

�

�

Â
f 02[p]d\{ f }

c[Tr ]f� f 0(bx f 0 � y f 0)

�

�

�

�

�

�

� 10p
B
k(bx� y)

[p]d\{ f }k2

3

5  1
100

. (3.2)

We have

10p
B
k(bx� y)

[p]d\{ f }k2 
10p
B

⇣

k(bx� y)S\{ f }k2 + k(bx� y)S\{ f }k2
⌘

 10p
B

✓

kbx� yk• ·
q

|S|+ kbxS\{ f }k2
◆

 10p
B

⇣

2n ·
p
26k+

p
kµ
⌘

 1
100

p
k

⇣

2n ·
p
26k+

p
kµ
⌘

< 0.12n, (3.3)

where the first step following by triangle inequality, the second step follows by the as-

sumption that supp(y) ✓ S, the forth step follows by CB � 106, the last step follows by

µ  n.

Therefore,

Pr
Tr
[|u f ,r � (

bx f � y f )|  0.12n] = Pr
Tr

2

4

�

�

�

�

�

�

Â
f 02[p]d\{ f }

c[Tr ]f� f 0(bx f 0 � y f 0)

�

�

�

�

�

�
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= 1� Pr
Tr
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�

�

Â
f 02[p]d\{ f }

c[Tr ]f� f 0(bx f 0 � y f 0)

�

�

�

�

�

�

> 0.12n

3

5

� 1� Pr
Tr

2

4

�

�

�

�

�

�

Â
f 02[p]d\{ f }

c[Tr ]f� f 0(bx f 0 � y f 0)

�

�

�

�

�

�

� 10p
B
k(bx� y)

[p]d\{ f }k2

3

5

� 1� 1
100

,

where the first step follows by (3.1), the third step follows by (3.3), and the last step follows

by (3.2).

Thus we have

Pr
Tr
[u f ,r 2 B•(bx f � y f , 0.12n)] � Pr

Tr
[|u f ,r � (

bx f � y f )|  0.12n] � 1� 1
100

.
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Let h f = medianr2[R]u f ,r as on Line 10 in Algorithm 11. By Chernoff bound, with probability

1� 1/ poly(n), more than 1
2R elements in {u f ,r}Rr=1 are contained in box B•(bx f � y f , 0.12n),

so that h f 2 B•(bx f � y f , 0.12n).

Therefore, we have

Pr[|h f � (

bx f � y f )|  0.17n] � Pr[|h f � (

bx f � y f )| 
p
2 · 0.12n] � 1� 1/ poly(n).

Let E be the event that for all f 2 [p]d, |h f � (

bx f � y f )|  0.17n. By a union bound over

f 2 [p]d, event E happens with probability 1� 1/ poly(n). In the rest of the proof, we

condition on event E.

(Case 1) For f 2 S, note that

|h f |  0.17n + |bx f � y f | = 0.17n + |bx f |  0.17n + 0.2n = 0.37n.

According to the if statement between Line 11 and Line 15 in Algorithm 11, z f will be

assigned to 0. Thus supp(z) ✓ S. In addition, |bx f � y f � z f | = |bx f |  µ  n.

(Case 2) For f 2 S, we have two cases. We prove that |(bx f � y f )� z f |  n for both cases.

(Case 2.1) |h f |  0.5n. z f is assigned as 0. Because

|h f � (

bx f � y f )|  0.17n, |bx f � y f |  |h f |+ 0.17n  0.67n.

Therefore,

|(bx f � y f )� z f |  0.67n  n.

(Case 2.2) |h f | > 0.5n. z f is assigned as h f . We have

|(bx f � y f )� z f | = |(bx f � y f )� h f |  0.17n  n.

We thus have obtained that with probability 1� 1/ poly(n), k(bx � y)� zk•  n and

supp(z) ✓ S.

The running time of LinfinityReduce is dominated by the loop between Line 4 and

Line 8, which takes O(R · n log n) = O(n log2 n) by FFT.
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(a) a box and grid (b) a good shift (c) a bad shift

Figure 3.4: Illustration of good and bad shifts in Definition 3.1.14. In (a), the small square represents box
B•(c, rb), and the dashed lines represent the decision boundary of Prg . The arrows in (b) and (c) represent
two different shifts, where the shift in (b) is an example of good shift, since the shifted box does not intersect
with the decision boundaries of Prg , while the shift in (c) is an example of bad shift, since the shifted box
intersects with the decision boundaries of Prg .

For a given box B•(c, r) and grid Grg , we say a shift s 2 C is good if after applying the

shift, all the points in the shifted box B•(c, r) + s are mapped to the same point by Prg

(recall that Prg projects any point to the nearst grid point in Grg ). We formulate the notation

of a good shift in the following definition, and illustrate in Figure 3.4.

Definition 3.1.14 (good shift). For any rg, rb, and any c 2 C, we say shift s 2 C is a good shift if

�

�Prg(B•(c, rb) + s)
�

�

= 1.

The following lemma intuitively states that if we take a box of radius rb (or equivalently,

side length 2rb) and shift it randomly by an offset in B•(0, rs) (or equivalently, [�rs, rs]⇥

[�rs, rs]) where rs � rb, and next we round everyone inside that shifted box to the closest

point in Grg where rg � 2rs, then with probability at least (1� rb/rs)2 everyone will be

rounded to the same point. In other words, let s ⇠ B•(0, rs), for box B•(c, rb) and grid Grg ,

s is a good shift with probability at least (1� rb/rs)2. We illustrate the lemma in Figure 3.5.

Lemma 3.1.15 (property of a randomly shifted box). For any rg, rs, rb so that rg/2 � rs � rb >
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2rb
2rs

rg
(a) rg � 2rs � 2rb (b) partition of good and bad shifts

Figure 3.5: Illustration of Lemma 3.1.15. In (a) the smallest square represents box B•(c, rb), the medium-
sized square represents B•(c, rs), and the dashed lines represent decision boundaries of Prg . Note that for
s ⇠ B•(0, rs), the center of the shifted box s+ B•(c, rb) is s+ c ⇠ B•(c, rs). Shift s is good (recall in
Definition 3.1.14) for box B•(c, rb) and grid Grg if and only if the distance between s + c and decision
boundaries of Prg is greater than rb. In (b), we draw in red the set of points which are within distance at most
rb to the decision boundaries of Prg . Then in (b) the red part inside B•(c, rs) corresponds to bad shifts (plus
c), and the green part corresponds to good shifts (plus c). Intuitively, the fraction of the green part is at least
(1� rb/rs)2 because the vertical red strips can cover a width of at most 2rb on the x-axis of B•(c, rs) (whose
side length is 2rs), and the horizontal red strips can cover a width of at most 2rb on the y-axis.

0 and any c 2 C, let s 2 C be uniform randomly chosen in B•(0, rs), then

Pr
s⇠B•(0,rs)

"

�

�

�

�

Prg(B•(c, rb) + s)
�

�

�

�

= 1

#

�
✓

1� rb
rs

◆2
,

where we refer rg, rs, rb as the radius of grid, shift and box respectively, and we use notation C+ s to

refer to {c+ s : c 2 C}.

Proof. We consider complex numbers as points in 2D plane, where the real part is the co-

ordinate on x-axis, and the imaginary part is the coordinate on y-axis. Note that the

“decision boundary” of projection Prg from C onto grid Grg consists of verticle lines

of form x = (m +

1
2 )rg and horizontal lines of form y = (m +

1
2 )rg, where m 2 Z.

�

�Prg(B•(c, rb) + s)
�

�

= 1 if and only if the shifted box B•(c, rb) + s does not intersect

with the “decision boundary”.

Let s = sx + syi and c = cx + cyi. Then the shifted box does not intersect with the
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“decision boundary” if and only if both the interval

[cx � rb + sx, cx + rb + sx] and [cy � rb + sy, cy + rb + sy]

do not intersect with {(m+

1
2 )rg : m 2 Z}. The probability of each one is at least 1� rb

rs , and

two events are independent. Therefore, we get the claimed result.

In the following, we define event E , which is a sufficient condition for the correctness of

Algorithm 10. Event E consists of three parts. Part 1 of E is used to prove that a`  10 log n

for ` 2 [L� 1] on Line 29 in Algorithm 10. Part 2 and Part 3 of E are used to prove that

Line 15 to Line 20 in Algorithm 10 give a desirable z(`) for ` 2 [L].

Definition 3.1.16 (sufficient condition for the correctness of Algorithm 10). For input signal

x 2 Cn, let µ =

1p
k
kbx�kk2 and R⇤ is an upper bound of kbxk•/µ. Let S be top CSk coordinates in

bx. Let H = min{log k+ CH, logR⇤}, and L = logR⇤ � H + 1. For ` 2 [L], let n` = 2�`
µR⇤.

For ` 2 [L� 1], let s(a)` be the a-th uniform randomly sampled from B•(0, an`) as appeared on

Line 26 in Algorithm 10 (i.e. s(1)` , . . . , s(a`)` are sampled, and s(a`)` is the first that satisfies the

condition on Line 28). For the sake of analysis, we assume that Algorithm 10 actually produces

an infinite sequence of shifts s(1)` , s(2)` , . . ., and chooses the smallest a` so that s(a`)` satisfies 8 f 2

supp(y(`�1)
+ z(`)), |P

bn`
(B•(y

(`�1)
f + z(`)f + s(a`)` , 21�H

n`))| = 1 on Line 28.

For ` 2 [L� 1], we define random variable a0` to be the smallest a0 such that for all f 2 S,

�

�

�

P
bn`

⇣

B•(bx f + s(a
0
)

` , 23�H
n`)

⌘

�

�

�

= 1.

We define event E to be all of the following events hold.

1. For all ` 2 [L� 1], a0`  10 log n.

2. For ` = 1, if we execute Line 15 to Line 20 in Algorithm 10 with y(0) = 0, we get z(1) such that

kbx� z(1)k•  21�H
n1 and supp(z(1)) ✓ S.

3. For all ` 2 {2, . . . , L}, for all a 2 [10 log n], if we execute Line 15 to Line 20 in Algorithm 10
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with y(`�1)
= x where

x f =

8

>

>

<

>

>

:

P
bn`

(

bx f + s(a)`�1), if f 2 S;

0, if f 2 S.

then we get z(`) such that kbx� y(`�1) � z(`)k•  21�H
n` and supp(y(`�1)

+ z(`)) ✓ S.

In the following, we will prove that for fixed x, under the randomness of {s(a)` }`2[L�1],a2{1,...}

and T = {T (h)}h2[H]

, event E (defined in Definition 3.1.16) happens with probability at

least 1� 1/ poly(n). Moreover, we will prove that event E is a sufficient condition for the

correctness of Algorithm 10. Namely, conditioned on event E , Algorithm 10 gives a desirable

output.

Lemma 3.1.17 (event E happens with high probability). Let E in Definition 3.1.16. For any

fixed x 2 Cn, under the randomness of shifts {s(a)` }`2[L�1],a2{1,...} and T = {T (h)}h2[H]

,

Pr[E ] � 1� 1/ poly(n).

Proof. We bound the failure probability of each parts in event E respectively as follows, and

Pr[E ] � 1� 1/ poly(n) follows by a union bound.

Part 1. If H = logR⇤, then L = 1 and it is trivially true that “for all ` 2 [L� 1], a0` 

10 log n”. Otherwise, we have H = log k+ CH . By Lemma 3.1.15, for any ` 2 [L� 1], for any

f 2 S,

Pr
s⇠B•(0,an`)

"

�

�

�

�

P
bn`

⇣

B•

⇣

bx f , 23�H
n`

⌘

+ s
⌘

�

�

�

�

= 1

#

�
✓

1� 23�H
n`

an`

◆2

=

✓

1� 23�H

a

◆2

,

where (1� 23�H/a)

2 � 1� 24�CH�log k/a � 1� 1
100k by our choice of a and CH in Table 3.2.

For each ` 2 [L � 1], by a union bound over all f in S, the probability is at least

1 � CSk
100k = 1 � 26k

100k � 1
2 that for all f 2 S, |P

bn`
(B•(bx f + s, 23�H

n`))| = 1 where s ⇠

B•(0, an`). Formally, we get

Pr
s⇠B•(0,an`)

"

�

�

�

�

P
bn`

⇣

B•

⇣

bx f , 23�H
n`

⌘

+ s
⌘

�

�

�

�

= 1, 8 f 2 S

#

� 1/2.
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Therefore, by definition of a0` in Definition 3.1.16,

Pr[a0`  10 log n] � 1� (1/2)10 log n = 1� 1/n10.

By a union bound over all ` 2 [L� 1], the probability is at least 1� L/n10 = 1� 1/ poly(n)

that for all ` 2 [L� 1], a0`  10 log n.

Part 2. By Lemma 3.1.13 and a union bound over all h 2 [H], the failure probability is at

most H/poly(n) = 1/ poly(n), where H = O(log k) and so H/poly(n) is still 1/ poly(n).

Part 3. For each ` 2 {2, . . . , L} and a 2 [10 log n], similar to the above argument, each

has failure probability at most 1/ poly(n). By a union bound, the failure probability is at

most

(L� 1) · (10 log n)/poly(n) = 1/ poly(n).

In the following lemma, we show that if event E (defined in Definition 3.1.16) happens,

then Algorithm 10 gives a desirable output.

Lemma 3.1.18 (correctness of Algorithm 10 conditioned on E ). Let n = pd, and let k 2 [n].

Let x 2 Cn be input signal. Let µ =

1p
k
kbx�kk2. Let R⇤ � kbxk• /µ and R⇤ is a power of 2.

Let H = min{log k + CH, logR⇤}. Let L = logR⇤ � H + 1. For ` 2 [L � 1], let y(`) be the

vector obtained on Line 31 of Algorithm 10. For ` 2 [L], let z(`) be the vector obtained on Line 20.

Note that y(0) = 0, and y(L�1)
+ z(L) is the output of FourierSparseRecovery(x, n, k,R⇤, µ) in

Algorithm 10. Conditioned on the event E (defined in Definition 3.1.16) happens, we have

kbx� y(L�1) � z(L)k•  1p
k
kbx�kk2.

Proof. We first discuss the case that H = logR⇤. In that case, L = 1. Conditioned on the

event E (Part 2 of E ), z(1) obtained through Line 15 to Line 20 in Algorithm 10 satisfies

kbx� z(1)k•  21�H
n1 = 21�H

(2�1
µR⇤

) = µ.

In the rest of the proof, we discuss the case that H > logR⇤. For ` 2 [L], let n` = 2�`
µR⇤.

For ` 2 [L� 1], let s(a`)` 2 B•(0, an`) denote the first s(a)` on Line 26 in Algorithm 10 such
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that for all f 2 supp(y(`�1)
+ z(`)),

�

�

�

P
bn`

⇣

B•

⇣

y(`�1)
f + z(`)f + s(a)` , 21�H

n`

⌘⌘

�

�

�

= 1.

For ` 2 [L� 1], we define x

(`) 2 C[p]d as follows

x

(`)
f =

8

>

>

<

>

>

:

P
bn`

(

bx f + s(a`)` ), if f 2 S;

0, if f 2 S.

We also define x

(0)
= 0, s(a)0 = 0 for a 2 {1, . . .} and a0 = 1.

(Goal: Inductive Hypothesis) We are going to prove that conditioned on event E

(defined in Definition 3.1.16), for all ` 2 {0, . . . , L� 1},

y(`) = x

(`) and a`  10 log n.

(Base case) Note that y(0) = x

(0)
= 0 and a0 = 1  10 log n.

(Inductive step) We will prove that conditioned on event E , if y(`�1)
= x

(`�1) and

a`�1  10 log n for ` 2 [L� 1], then y(`) = x

(`) and a`  10 log n.

(Proving a`  10 log n) Conditioned on event E (if L = 1 then from Part 2 of E , otherwise

from Part 3 of E and by the fact that a`�1  10 log n), z(`) obtained through Line 15 to

Line 20 in Algorithm 10 satisfies kbx� x

(`�1) � z(`)k•  21�H
n` and supp(z(`)) ✓ S. Namely,

for all f 2 [p]d, x

(`�1)
f + z(`)f 2 B•(bx f , 21�H

n`). Recall the definition of a0` in Definition 3.1.16.

We can prove that a`  a0` because if for all f 2 S,

�

�

�

P
bn`

⇣

B•

⇣

bx f + s(a
0
`)

` , 23�H
n`

⌘⌘

�

�

�

= 1,

then for all f 2 supp(y(`�1)
+ z(`)),

�

�

�

P
bn`

⇣

B•

⇣

y(`�1)
f + z(`)f + s(a

0
`)

` , 21�H
n`

⌘⌘

�

�

�

= 1

where

B•

⇣

y(`�1)
f + z(`)f + s(a

0
`)

` , 21�H
n`

⌘

✓ B•

⇣

bx f + s(a
0
`)

` , 23�H
n`

⌘
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which follows by x

(`�1)
f + z(`)f 2 B•(bx f , 21�H

n`). Therefore, conditioned on E (Part 1 of E ),

a`  a0`  10 log n.

(Proving y(`)f = x

(`)
f ) For f 2 [p]d, we will prove that y(`)f = x

(`)
f in two cases.

(Case 1) If f 2 supp(y(`�1)
+ z(`)) ✓ S. We have

y(`)f = P
bn`

⇣

y(`�1)
f + z(`)f + s(a`)`

⌘

= P
bn`

⇣

x

(`�1)
f + z(`)f + s(a`)`

⌘

.

Because x

(`�1)
f + z(`)f 2 B•(bx f , 21�H

n`), we have x

(`�1)
f + z(`)f + s(a`)` 2 B•(bx f + s(a`)` , 21�H

n`).

By the choice of s(a`)` , P
bn`

(x

(`�1)
f + z(`)f + s(a`)` ) = P

bn`
(

bx f + s(a`)` ). Thus y(`)f = x

(`)
f .

(Case 2) If f 62 supp(y(`�1)
+ z(`)). We have y(`)f = 0. Because x

(`�1)
f + z(`)f 2 B•(bx f , 21�H

n`),

we have |bx f | < 22�H
n` < 0.1bn` by our choice of H. We can easily prove that x

(`)
f = 0 = y(`)f

in the following two cases:

(Case 2.1) If f 2 S, we have x

(`)
f = P

bn`
(

bx f + s(a`)` ) = 0 because

|bx f |+ |s(a`)` | < 0.1bn` + 2an` < 0.5bn`.

(Case 2.2) If f 2 S, x

(`)
f = 0 by definition of x

(`).

Therefore, for all ` 2 [L� 1], y(`) = x

(`) and a`  10 log n. Again conditioned on event E

(Part 3 of E ), z(L) obtained through Line 15 to Line 20 in Algorithm 10 satisfies

kbx� y(L�1) � z(L)k•  21�H
nL = 21�H

(2�(logR⇤�H+1)
µR⇤

) = µ.

Therefore, y(L�1)
+ z(L) on Line 22 gives a desirable output.

Now we present our main theorem, which proves the correctness of Algorithm 10, and

shows its sample complexity and time complexity.

Theorem 3.1.19 (main result, formal version). Let n = pd where both p and d are positive

integers. Let x 2 C[p]d . Let k 2 {1, . . . , n}. Assume we know µ =

1
kkbx�kk2 and R⇤ � kbxk•/µ

where logR⇤
= O(log n). There is an algorithm (Algorithm 10) that takes O(k log k log n) samples
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from x, runs in O(n log3 n log k) time, and outputs a O(k)-sparse vector y such that

kbx� yk•  1p
k

min
k�sparse x0

kbx� x0k2

holds with probability at least 1� 1/ poly(n).

Proof. The correctness of Algorithm 10 follows directly from Lemma 3.1.17 and Lemma 3.1.18.

The number of samples from x is

B · R · H = O(k · log n · log k) = O(k log k log n).

Its running time is dominated by L · H = O(log k log n) invocations of LinfinityReduce

(in Algorithm 11). By Lemma 3.1.13, the running time of LinfinityReduce is O(n log2 n).

Therefore, the running time of Algorithm 10 is

O(L · H · n log2 n) = O(log k · log n · n log2 n) = O(n log3 n log k).

3.2 Deterministic Sparse Fourier Transform with an `• Guarantee

3.2.1 Technical Results

Preliminaries

For a positive integer n, we define [n] = {0, 1 . . . , n� 1} and we shall index the coordinates

of a n-dimensional vector or the rows/columns of an n⇥ n matrix from 0 to n� 1. Let

w = e�2p

p
�1/n and we define the Discrete Fourier Transform Matrix F 2 Cn⇥n to be the

unitary matrix such that Fij = 1p
n e

�2p

p
�1·ij/n, and the discrete Fourier Transform (DFT) of a

vector x 2 Cn to be bx = Fx.

For a set S ✓ [n] we define xS to be the vector obtained from x after zeroing out the

coordinates not in S. We also define H(x, k) to be the set of the indices of the largest k

coordinates (in magnitude) of x, and x�k = x
[n]\H(x,k). We say x is k-sparse if x�k = 0.

We also define kxkp =

�

Ân�1
i=0 |xi|p

�1/p for p > 1 and kxk0 to be the number of nonzero
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coordinates of x.

For a matrix F 2 Cn⇥n and subsets S, T ✓ [n], we define FS,T to be the submatrix of F

indexed by rows in S and columns in T.

The median of a collection of complex numbers {zi} is defined to be mediani zi =

mediani <(zi) +
p
�1mediani =(zi), i.e., taking the median of the real and the imaginary

component separately.

`•/`1 Gurantee and incoherent matrices

A sparse recovery scheme consists of a measurement matrix F 2 Cm⇥n and a recovery

algorithm R such that for any given x 2 Cn, the scheme approximates x by bx = R(Fx). The

quality of the approximation is usually measured in different error metrics, and the main

recovery guarantee we are interested in is called the `•/`1 guarantee, defined as follows.

Definition 3.2.1 (`•/`1 guarantee). A sparse recovery scheme is said to satisfy the `•/`1 guaran-

tee with parameter k, if given access to vector x, it outputs a vector bx0 such that

kbx� bx0k•  1
k
kbx�kk1. (3.4)

Such scheme is also called a `•/`1 scheme.

Other types of recovery guarantee, such as the `•/`2, the `2/`2 and the `2/`1, are defined

similarly, where (3.4) is replaced with the respective expression in Table 3.4. Note that these

are definitions of the error guarantee per se and do not have algorithmic requirements on

the scheme.

Highly relevant with the `•/`1 guarantee is a matrix condition which we call incoherence.

Definition 3.2.2 (Incoherent Matrix). A matrix A 2 Cm⇥n is called e-incoherent if kAik2 = 1

for all i (where Ai denotes the i-th column of A) and |hAi, Aji|  e.

Lemma 3.2.3 ([NNW14]). There exist an absolute constant c > 0 such that for any (c/k)-

incoherent matrix A, there exists a `•/`1-scheme which uses A as the measurement matrix and
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Guarantee Formula Deterministic Lower Bound
`•/`2 kbx� bx0k•  kbx�kk2/

p
k W(n) [CDD09]

`2/`2 kbx� bx0k2  Ckbx�kk2 W(n) [CDD09]
`•/`1 kbx� bx0k•  kbx�kk1/k W(k2 + k log n) [Gan08, FPRU10]
`2/`1 kbx� bx0k2  kbx�kk1/

p
k W(k log(n/k)) [Gan08, FPRU10]

Table 3.4: Common guarantees of sparse recovery. Only the `2/`2 case requires a parameter C > 1. The
guarantees are listed in the descending order of strength.

whose recovery algorithm runs in polynomial time.

The Restrictred Isometry Property and its connection with incoherence

Another highly relevant condition is called the renowned restricted isometry property,

introduced by Candès et al. in [CRT06]. We show how incoherent matrices are connected to

it.

Definition 3.2.4 (Restricted Isometry Property). A matrix A 2 Cm⇥n is said to satisfy the

(k, e) Restricted Isometry Property, if for all x 2 Cn with kxk0  k, its holds that (1� e)kxk2 

kAxk2  (1+ e)kxk2.

Candès et al. proved in ther breakthrough paper [CRT06] that any RIP matrix can be

used for sparse recovery with the `2/`1 error guarantee. The following formulation comes

from [FR13, Theorem 6.12].

Lemma 3.2.5. Given a (2k, e)-RIP matrix A with e < 4/
p
41, we can design a `2/`1-scheme that

uses A as the measurement matrix and has a recovery algorithm that runs in polynomial time.

Although randomly subsampling the DFT matrix gives an RIP matrix with k log2 k log n

rows [HR16], no algorithm for finding this rows in polynomial time is known; actually,

even for o(k2) · poly(log n) rows the problem remains wide open 4 It is a very important

4In fact, one of the results of our paper gives the state of the art result even for this problem, with O(k2 log n)
rows, see Theorem 3.2.11.
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Samples Run-time Guarantee Explicit Construction Lower Bound
[HR16] k log2 k log n poly(n) `2/`1 No k log(n/k)
[MZIC17] k2 log5.5 n k2 log5.5 n `2/`1 Yes k log(n/k)
Theorem 3.2.8 k2 log n nk log2 n `•/`1 Yes k2 + k log n[NNW14]
Theorem 3.2.9 k2 log2 n k2 log3 n `•/`1 Yes k2 + k log n [NNW14]

Table 3.5: Comparison of our results and the previous results. All O- and W-notations are suppressed. The
result in the first row follows from Lemma 3.2.5 and the RIP matrix in [HR16].Our algorithms adopt the
common assumption in the sparse FT literature that the signal-to-noise ratio is bounded by nc for some absolute
constant c > 0.

and challenging problem whether one can have explicit construction of RIP matrices from

Fourier measurements that break the quadratic barrier on k.

We state the following two folklore results, connecting the two different guarantees, and

their associated combinatorial objects. This indicates the importance of incoherent matrices

for the field of compressed sensing.

Proposition 3.2.6. An `•/`1 scheme with a measurement matrix of m rows and recovery time T

induces an `2/`1 scheme of a measurement matrix of O(m) rows and recovery time O(T + kbx0k0),

where bx0 is the output of the `•/`1 scheme.

Proposition 3.2.7. A (c/k)-incoherent matrix is also a (k, c)-RIP matrix.

Our results

Theorem 3.2.8. Let n be a power of 2. There exist a set S ✓ [n] with |S| = O(k2 log n) and

an absolute constant c > 0 such that the following holds. For any vector x 2 Cn with kbxk• 

nckbx�kk1/k, one can find an O(k)-sparse vector bx0 2 Cn such that

kbx� bx0k•  1
k
kbx�kk1,

in time O(nk log2 n) by accessing {xi}i2S only. Moreover, the set S can be found in poly(n) time.

Theorem 3.2.9. Let n be a power of 2. There exist a set S ✓ [n] with |S| = O(k2 log2 n)

and an absolute constant c > 0 such that the following holds. For any vector x 2 Cn with
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kbxk•  nckbx�kk1/k, one can find an O(k)-sparse vector bx0 2 Cn such that

kbx� bx0k•  1
k
kbx�kk1,

in time O(k2 log3 n) by access to {xi}i2S only. Moreover, the set S can be found in poly(n) time.

Remark 3.2.10. The condition kbxk•  nckbx�kk1/k may seem strange at the first glance, but it

upper bounds the “signal-to-noise ratio”, a common measure in engineering that compares the level of

a desired signal to the level of the background noise. This is a common assumption in most algorithms

in the Sparse Fourier Transform literature, see, e.g. [HIKP12a, IK14, Kap16, CKSZ17, Kap17], where

the `2-norm variant kbxk•  nckbx�kk2/
p
k was assumed.

We also give the following result on incoherent matrices. The proof can be found in

Section 3.2.6.

Theorem 3.2.11. There exists a set S ✓ [n] with |S| = m = O(k2 log n) such that the matrix
pm

n FS,[n] is (1/k)-incoherent. Moreover, S can be found in poly(n) time.

In Section 3.2.7, we give a construction of explicit (1/k)-incoherent matrices via character

sums. The number of rows matches the constructions in [DeV07, AM11, DeV07] which were

obtained via Gelfand widths, BCH codes and Reed-Solomon codes respectively.

Comparing `2/`1 with `•/`1

4 In this subsection we elaborate why `•/`1 is much stronger than `2/`1, and not just a

guarantee that implies `2/`1. Let g < 1 be a constant and consider the following scenario.

There are three sets A, B,C of size gk, (1� g)k, n� k respectively, and for every coordinate

in A we have |bxi| = 2
kkbxCk1 = 2

kkbx�kk1, while every coordinate in B,C is equal in magnitude.

The following relation between the `1 masses of bxB[C and bxC is immediate:

kbxCk1 =
n� k
n� gk

kbxB[Ck1.

Now assume that k  gn, then (n� gk)/(n� k)  1+ g. We claim that the zero vector
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is a valid solution for the `2/`1 guarantee, since

k~0� bxk22 = kbxAk22 + kbxB[Ck22

 gk · 4
k2
kbx�kk21 +

1
(n� gk)

kbxB[Ck21

 4g

k
kbx�kk21 +

n� gk
(n� k)2

kbxCk21


✓

4g

k
+

1+ g

n� k

◆

kbx�kk21

 5g

k
kbx�kk21,

where the last inequality follows provided it further holds that k  gn/(2g + 1). Hence

when g  1/5, we see that the zero vector satisfies the `2/`1 guarantee.

Since~0 is a possible output, we may not recover any of the coordinates in S, which is

the set of “interesting” coordinates. On the other hand, the `•/`1 guarantee does allow

the recovery of every coordinate in S. This is a difference of recovering all gk versus 0

coordinates. We conclude from the discussion above that in the case of too much noise, the

`2/`1 guarantee becomes much weaker than the `•/`1, possibly giving meaningless results

in some cases.

We wish to stress the following remarks, which might help the reader obtain a more

complete picture of the results, as well as the difficulties needed to overcome.

Remark 3.2.12. An inspection of Table 3.5 shows that our sublinear-time algorithm for `•/`1

(Theorem 3.2.9) is closer to its corresponding lower bound than the previous attempts for `2/`1. In

fact, previous algorithms are at least k · poly(log n) factors away from the lower bound while we are

only log2 n factors away. Ideally, one desires to have an O(k · poly(log n)) deterministic algorithm

for `2/`1; however, with the current state of the art techniques, this seems to be way out of reach, see

also next remark.

Remark 3.2.13. Even if one cared only about sample complexity and not running time, our result

is the state-of-the-art for deterministic `2/`1. Even with arbitrary measurements, only a mild

(but highly technical and important) deterministic construction of `2/`1 schemes is known: The

breakthrough work of Bourgain et al. uses roughly O(k2�e0 log n) measurements [BDF+11], where
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e0 can be chosen to be approximately 4 · 5.5169 · 10�28 and has been improved to 4 · 4.4466 · 10�24

following a sequel of works [Mix].

3.2.2 Technical Toolkit

Properties of the Fourier Transform

Definition 3.2.14 (Convolution of two vectors). Let x, y 2 RN. The convolution v = x ? y of

x, y is the N-dimensional vector defined as vi = Âj2[N]

xjyi�j, where the indices of the vectors are

taken modulo N, i.e. y�j = y
(N�j) mod N.

Theorem 3.2.15 (convolution-multiplication duality). Let x, y 2 CN. It holds that [x ? y =

bx� by

and [x� y =

bx ? by, where � represents the coordinate-wise product of two vectors, i.e. (x� y)i =

xiyi.

Hash Functions

Definition 3.2.16 (Frequency domain hashings p, h, o). Given s, b 2 [n], we define a function

p

s,b : [n] ! [n] to be p

s,b( f ) = s( f � b) (mod n) for all f 2 [n]. Define a hash function

h
s,b : [n] ! [B] as h

s,b( f ) = round((B/n)p
s,b( f )) and the off-set functions o f ,s,b : [n] ! [n/B]

as o f ,s,b( f 0) = p

s,b( f 0)� (n/B)h
s,b( f ). When it is clear from context, we will omit the subscripts

s, b from the above functions.

In what follows, we might use the notation H = (s, a, b) to denote a tuple of values along

with the associated hash function from Definition 3.2.16. Below we define a pseudorandom

permutation in the frequency domain.

Definition 3.2.17 (P
s,a,b). Suppose that s

�1 mod n exists. For a, b 2 [n], we define the pseudo-

random permutation P
s,a,b by (P

s,a,bx)t = x
s(t�a)w

tsb.

Proposition 3.2.18 ([HIKP12a, Claim 2.2]). (\P
s,a,bx)

p

s,b( f ) = bx f w
as f .

Definition 3.2.19 (Sequence of Hashings). A sequence of d hashings is specified by d tuplets

{(sr, ar, br)}r2[d]. For a fixed r 2 [d], we will also set pr, hr, or to be the functions defined in
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Definition 3.2.16, and Pr to be the pseudorandom permutation defined in Definition 3.2.17, by setting

a = ar, b = br, s = sr.

Filter Functions

Definition 3.2.20 (Flat filter with B buckets and sharpness F [Kap17]). A sequence bG 2 Rn

symmetric about zero with Fourier transform G 2 Rn is called a flat filter with B buckets and

sharpness F if

(1) bGf 2 [0, 1] for all f 2 [n];

(2) bGf � 1� (1/4)F�1 for all f 2 [n] such that | f |  n
2B ;

(3) bGf  (1/4)F�1
(

n
B| f | )

F�1 for all f 2 [n] such that | f | � n
B .

Lemma 3.2.21 (Compactly supported flat filter with B buckets and sharpness F [Kap17]). Fix

the integers (n, B, F) with n a power of two, integers B < n, and F � 2 an even integer. There exists

an (n, B, F)-flat filter bG 2 Rn, whose inverse Fourier transform G is supported on a length-O(FB)

window centered at zero in time domain.

Lemma 3.2.22 ([HIKP12b, Lemma 3.6], [HIKP12a, Lemma 2.4], [IK14, Lemma 3.2]). Let

f , f 0 2 [n]. Let s be uniformly random odd number between 1 and n� 1. Then for all d � 0 we

have Pr[|s( f � f 0)|�  d]  4d/n.

Formulas for Estimation

Definition 3.2.23 (Measurement). For a signal bx 2 Cn, a hashing H = (s, a, b), integers B and

F, a measurement vector mH 2 CB is the B-dimensional complex-valued vector such that

(mH)s = Â
f2[n]

bG
p( f )�(n/B)·sw

as f · bx f 2 C

for s 2 [B]. Here bG is a filter with B buckets and sharpness F constructed in Definition 3.2.20.

The following lemma provides a HashToBins procedure, which computes the bucket

values of the residual bx� bz, where bz is also provided as input.
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Lemma 3.2.24 (HashToBins [Kap17, Lemma 2.8]). Let H = (s, a, b) and parameters B, F

such that B is a power of 2, and F is an even integer. There exists a deterministic procedure

HashToBins(x, bz,H) which computes u 2 CB such that for any f 2 [n],

uh( f ) = Dh( f ) + Â
f 02[n]

bGof ( f 0)(bx� bz) f 0was f 0 ,

where bG is the filter defined in Definition 3.2.20, and Dh( f ) is a negligible error term satisfying

|Dh( f )|  kzk2 · n�c for c > 0 an arbitrarily large absolute constant. It takes O(BF) samples, and

O(F · B log B+ kbzk0 · log n) time.

For a hashing H = (s, a, b), values B, F, and the associated measurement mH, one has

bG�1
o f ( f )

(mH)h( f )w
�as f

=

bx f + bG�1
o f ( f ) Â

f 02[n]\{ f }
bGof ( f 0)bx f w

as( f 0� f )

| {z }

noise term

. (3.5)

A trivial but useful lemma

The following is a basic fact of complex numbers, which will be crucially used in our

sublinear-time algorithm, for estimating the phase of a heavy coordinate.

Proposition 3.2.25. Let x, y 2 C with |y|  |x|/3, then | arg(x+ y)� arg x|  p/8.

Proof. The worst case occurs when y is orthogonal to x, and thus | arg(x + y)� arg x| 

arctan(1/3) < p/8.

3.2.3 Overview

We first show how to obtain for-all schemes, i.e., schemes that allow universal reconstruction

of all vectors, and then derandomize them. Similarly to previous work [HIKP12b, IK14,

Kap17], we hash, with the filter in [Kap17], the spectrum of x to O(k) buckets using

pseudorandom permutations, and repeat k log n times with fresh randomness. The main

part of the algorithm is to show that for any vector bx 2 Cn and any set S ✓ [n] with |S|  k,

each i 2 S, in a constant fraction of the repetitions, receives “low noise” from all other
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elements, due to this hashing. We show that this boils down to a set of Q(n2) inequalities,

which invoke the filter and the pseudorandom permutations. We prove these inequalities

with full randomness, and then derandomize the scheme using the method of conditional

expectations. For that we choose the pseudorandom permutations one by one, and keep a

(rather intricate) pessimistic estimator, which we update accordingly. Our arguments highly

extend arguments in [NNW14] and [PR08].

Our sublinear-time algorithm is obtained by bootstrapping the above scheme with an

identification procedure in each bucket, as most previous algorithms have done. In contrast

to previous approaches, e.g. [HIKP12a], our identification procedure has to be deterministic.

We show an explicit set of samples that allow the implementation of the desired routine. To

illustrate our idea, let us focus on the following 1-sparse case: bx 2 Cn and |bxi⇤ | � 3kbx
[n]\i⇤k1

for some i⇤, which we want to locate. Let

qj =

✓

2p

n
j
◆

mod 2p,

and consider the log n samples x0, x1, x2, x4, . . . , x2r�1 , . . . .

Observe that (ignoring 1/
p
n factors) since

x
b

=

bxi⇤e
p
�1bqi⇤

+ Â
j 6=i⇤

bxje
p
�1bqj ,

we can find bqi⇤ + arg bxi⇤ up to p/8, just by estimating the phase of x
b

and Fact 3.2.25.

Thus we can estimate bqi⇤ up to p/4 from the phase of x
b

/x0. If i⇤ 6= j, then there exists a

b 2 {1, 2, 22, . . . , 2r�1, . . .} such that |bqi⇤ � bqj|o > p/2, and so bqj will be more than p/4

away from the phase of the measurement. Thus, by iterating over all j 2 [n], we keep the

index j for which bqj is close to the arg(x
b

/x0) by p/4, for every b that is a power of 2 in

Zn.

Unfortunately, although this is a deterministic collection of O(log n) samples, the above

argument gives only O(n log n) time. For sublinear-time decoding we use x1/x0 to find

a sector S0 of the unit circle of length p/4 that contains qi⇤ . Then, from x2/x0 we find

two sectors of length p/8 each, the union of which contains qi⇤ . Because these sectors are
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antipodal on the unit circle, the sector S0 intersects exactly one of those, let the intersection

be S1. The intersection is again a sector of length at most p/8. Proceeding iteratively, we

halve the size of the sector at each step, till we find qi⇤ , and infer i⇤. Plugging this idea in the

whole k-sparse recovery scheme, yields the desired result. Our argument crucially depends

on the fact that in the `1 norm phase of qi⇤ will always dominate the phase of all samples

we take. On contrast, it totally fails for the `2 norm, since there is a decent chance (which

can even be 1� 1/n ) that i⇤ is drowned in the error coming from coordinates j 6= i⇤.

Our result for incoherent matrices is more general and works for any matrix that has

orthonormal columns and entries bounded by O(1/
p
n). We subsample the matrix, invoke a

Chernoff bound and Bernstein’s inequality to show the small incoherence of the subsampled

matrix. We follow a mazy derandomization procedure, which essentially mimics the proof

of Bernstein’s inequality, by keeping a pessimistic estimator which corresponds to the sum

of the generating functions of the probabilities of all events we want to hold, evaluated

at specific points. Our second construction of incoherent matrices, involves the use of the

infamous Weil bound on character sums. Our construction and its analysis, modulo the

(rather complicated) proof of the Weil bound, are much simpler than previous constructions

[DeV07, AM11].

3.2.4 Linear-Time Algorithm

Our first step is to obtain a condition that allows us to approximate every coordinate of

x 2 Cn. This condition corresponds to a set of n(n� 1) inequalities. In this section we often

considers a sequence of hashings {Hr}r2[d] = {(sr, ar, br)}r2[d] and for notational simplicity

we shall abbreviate o f ,sr ,br( f
0
) as o f ,r( f 0).

Lemma 3.2.26. Fix B and F. Let a sequence of hashings {Hr}r2[d] = {(sr, ar, br)}r2[d] and x 2 Cn.

We let o f ,r = o f ,sr ,br If for all f , f
0 2 [n] with f 6= f 0 it holds that

Â
r2[d]

bG�1
o f ,r( f )

bGof ,r( f 0) 
2d
B
, (3.6)
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then for every vector x 2 Cn and every f 2 [n], for at least 8d/10 indices r 2 [d] we have that

�

�

�

bx f � bG�1
o f ,r( f )

(mHr)hr( f )

�

�

�

 10
B
kbx

[n]\{ f }k1. (3.7)

Proof. We have that

Â
r2[d]

�

�

�

bx f � bG�1
o f ,r( f )

(mHr)hr( f )

�

�

�

= Â
r2[d]

�

�

�

�

�

�

bG�1
o f ,r( f ) Â

f 02[n]\{ f }
bGof ,r( f 0)bx f 0w

arsr( f 0� f )

�

�

�

�

�

�

(by (3.5))

 Â
r2[d]

bG�1
o f ,r( f ) Â

f 02[n]\{ f }
bGof ,r( f 0)|bx f 0 |

= Â
f 02[n]\{ f }

|bx f 0 | Â
r2[d]

bG�1
o f ,r( f )

bGof ,r( f 0)

 Â
f 02[n]\{ f }

|bx f 0 |
2d
B
.

Hence there can be at most 2d/10 indices r 2 [d] for which the estimate |bx f � bGof ,r( f ) ·

mr(hr( f ))| is more than (10/B)kbx
[n]\{ f }k1, otherwise the leftmost-hand side would be at

least (2d/10+ 1) · (10/B)kbx
[n]\{ f }k1 > 2(d/B)kbx

[n]\{ f }k1.

The lemma above implies that for every f 2 [n] we can find an estimate of bx f up to

10
B kx[n]\{ f }k1 in time O(d), by taking the median of all values mr(hr( f )) for r 2 [d]. In

what follows, we prove the first part of Theorem 3.2.8 (existence of S) assuming that the

conditions of Lemma 3.2.26 hold.

For notational simplicity, let e = (1/4)F�1 so the filter bG satisfies that bGf 0 � 1� e for all

f 0 2 [� n
2B ,

n
2B ] and bGf 0  e for all f 0 2 [n] \ (� n

B ,
n
B ). In the rest of the section, we choose

B = 10(1� e)

�1
bk for some constant b to be determined.

As in previous Fourier sparse recovery papers [HIKP12a, IK14, Kap16, Kap17], we

assume that we have the knowledge of µ = kbx�kk1/k (or a constant factor upper bound)

and that the signal-to-noise ratio R⇤
= kbxk1/µ  na. Our estimation algorithm is similar to

that in [IK14]. The main algorithm is Algorithm 12. It recovers the heavy coordinates of bx in

increasing magnitude by repeatedly calling the subroutine Algorithm 13, which recovers

the heavy coordinates of the residual spectrum above certain threshold.

The following lemmata are analogous to Lemmata 6.1 and 6.2 in [IK14], and their proofs
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Algorithm 12 Overall algorithm

T  log
g

R⇤

bz  0
n

(0)  Cµ
for t = 0 to T � 1 do

bz  bz+ SubRecovery(x, bz(t+1), n(t))
n

(t+1)  gn

(t)

end for
return bz

Algorithm 13 Linear-time Sparse Recovery for bx� bz
function SubRecovery(x, bz, n)

S  ∆
for r = 1 to d do

ur  HashToBins(x, bz, (sr, 0, br))
end for
for f 2 [n] do

bx0f = medianr2[d] bG�1
o f ,r( f )

(ur)hr( f ) . o f ,r = o f ,sr ,br
if |bx0f | > n/2 then

S  S [ { f }
end if

end for
return bx0S

end function

are postponed to Section 3.2.8. The first lemma states that Algorithm 13 will recover all

the coordinates in the residual spectrum that are at least n and it will not mistake a small

coordinate for a large one.

Lemma 3.2.27. Suppose that x, bz, n be the input to Algorithm 13. Let w =

bx � bz. When n �
16
bkk bwk1, the output bw0 of Algorithm 13 satisfies

1. | bwf | � (7/16)n for all f 2 supp( bw0
).

2. | bwf � bw0
f |  | bwf |/7 for all i 2 supp( bw0

);

3. supp( bw0
) contains all f such that | bwf | � n;

Next we turn to the analysis of Algorithm 12. Let H = H(

bx, k) and I = { f : |bx f | �
1
rkkbx�kk1} for some constant r to be determined. By the SNR assumption of bx, we have
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that kbxHk1  kkbxk•  R⇤kbx�kk1 and thus kbxk1  (R⇤
+ 1)kbx�kk1. In Algorithm 12, the

threshold in the t-th step is

n

(t)
= Cµg

T�t,

where C � 1,g > 1 are constants to be determined. Let r(t) be the residual vector at the

beginning of the t-th step in the iteration. We can show that the coordinates we shall ever

identify are all heavy (contained in I) and we always have good estimates of them.

Lemma 3.2.28. There exist C, b, r,g such that it holds for all 0  t  T that

1. bx f = r(t)f for all f /2 I;

2. |r(t)f |  |bx f | for all f .

3. kr(t)I k•  n

(t);

Now we are ready to show the first part of Theorem 3.2.8, which is one of our main

results. We shall choose d = O(k log n) such that (3.2.26) holds. The hashings {Hr}r2[d] can

be chosen deterministically, which we shall prove in the rest of the section after this proof;

this will complete the full proof.

Proof of Theorem 3.2.8. The recovery guarantee follows immediately from Lemma 3.2.28, as

kr(T)k•  max{kr(T)I k•, kr(T)Ic k•}  max{n

(T), kbxIck•}  max{2µ, (1/r)µ} = 2µ. (3.8)

Computing the measurements in SubRecovery requiresO(k)measurements (Lemma 3.2.24).

These measurements are reused throughout the iteration in the overall algorithm, hence

there are O(kd) = O(k · k log n) = O(k2 log n) measurements in total.

Each call to SubRecovery runs in timeO(d(B log B+ kbzk0 log n)+nd) = O(k2 log k log n+

kkbzk0 log2 n+ nk log n). By Lemma 3.2.28(a), we know that kbzk0  |I| = O(k). The over-

all runtime is therefore O(k2 log k log n+ nk log2 n+ k2 log2 n) = O(k2 log2 n+ nk log2 n) =

O(nk log2 n).

To obtain the `•/`1 error guarantee, or µ on the right-hand side of (3.8) we can just

replace k with 2k throughout our construction and analysis.
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Derandomization: Pessimistic Estimator

The rest of the section is devoted to finding {(sr, ar, br)}r2[d] such that (3.6) holds for all

pairs f 6= f 0. It will be crucial for the next section that we can choose ar freely; that

means the inequaltities depend solely on sr, br. Note that o f ,r( f ) 2 [� n
2B ,

n
2B ] and thus

bGof ,r( f ) 2 [1� e, 1], it suffices to find {(sr, br)}r2[d] such that it holds for all f 6= f 0 that

Â
r2[d]

bGof ,r( f 0) 
2

1+ e

· d
B
.

To proceed, we derandomize using the method of conditional expectations.

Definition 3.2.29 (Bad Events). Let C = 2/(1+ e) and b = Cd/B. Let A f , f 0 denote the event

Âd
r=1

bGof ,r( f 0) � b.

The derandomization proceeds as follows: find a pessimistic estimator hr( f , f 0; s1, b1, . . . , sr, br)

for each r with the first r hash functions fixed by (s1, b1), . . . , (sr, br) such that the following

holds:

Pr
�

Af , f 0 |s1, b1, . . . , sr, br
�

 hr( f , f 0; s1, b1, . . . , sr, br) (3.9)

Â
f 6= f 0

h0( f , f 0) < 1 (3.10)

hr( f , f 0; s1, b1, . . . , sr, br) � E
sr+1,br+1

hr+1( f , f 0; s1, b1, . . . , sr, br, sr+1, br+1) (3.11)

The algorithm will start with r = 0. At the r-th step, it chooses sr+1, br+1 to minimize

Â
f 6= f 0

hr+1( f , f 0; s1, b1, . . . , sr, br, sr+1, br+1).

By (3.11), this sum keeps decreasing as r increases. At the end of step d � 1, all hash

functions are fixed, and by (3.9) and (3.10), we have Â f 6= f 0 Pr(Af , f 0 |s1, b1, . . . , sd, bd) < 1.

Since Af , f 0 is a deterministic event conditioned on all d hash functions, the conditional

probability is either 0 or 1. The inequality above implies that all conditional probabilities

are 0, i.e., none of the bad events Af , f 0 happens, as desired.

We first define our pessimistic estimator. In what follows, we shall be dealing with

numbers that might have up to O(n) digits. Manipulating numbers of that length can be
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done in polynomial time. We will not bother with determining the exact exponent in the

polynomial or optimizing it, which we leave to future work.

Definition 3.2.30 (Pessimistic Estimator). Let l > 0 to be determined. Define

hr( f , f 0; s1, b1, . . . , sr, br) = e�lb exp

 

l

r

Ầ
=1

bGof ,`( f 0)

!

(M(l))

d�r,

where

M(l) = ele

✓

2
B
+

1
n

◆

(el(1�e) � 1) + 1
�

.

This function can be evaluated in eO(r) · poly(n) time for each pair f 6= f 0 and thus the

algorithm runs in time eO(n2d2).

To complete the proof, we shall verify (3.9)–(3.11) below.

Distribution of Offset Function

This subsection prepares auxiliary lemmata which will be used to verify the derandomization

inequalities. In this subsection we focus on the distribution of the offset o f ,s,b( f 0) for f 0 6= f

and appropriately random s and b.

Lemma 3.2.31. Suppose that n, B are powers of 2, s is uniformly random on the odd integers in [n]

and b is uniformly random in [n]. For any fixed pair f 6= f 0 it holds that

1. When (n/B) - ( f � f 0), o f ,s,b( f 0) is uniformly distributed on [n];

2. When ( f � f 0)/(n/B) is even, Pr{o f ,s,b( f 0) = `} = 0 for all ` 2 [� n
B ,

n
B ].

3. When ( f � f 0)/(n/B) is odd, Pr{o f ,s,b( f 0) = `} = 0 for ` 2 [� n
2B ,

n
2B ) and Pr{o f ,s,b( f 0) =

`} =

2
n for ` 2 [� n

B ,� n
2B ) [ [

n
2B ,

n
B ].

Proof. First observe that

o f ( f 0) ⌘ s( f 0 � f ) + s( f � b)� n
B
round

✓

B
n

s( f � b)
◆

(mod n).

For a fixed s, let

Z
s

= s( f � b)� n
B
round

✓

B
n

s( f � b)
◆

.
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Note that s( f � b) mod n is uniform on [n] (for random b), it is easy to see that Z
s

is

uniform on its support, which is [� n
2B ,

n
2B ).

Suppose that f 0 � f ⌘ 2sK (mod n), where K � 1 is an odd integer. It is clear that

s( f 0 � f ) is uniform on its support T = {2s` mod n : ` is odd}, which consists of equidistant

points. Since Z
s

is always uniform (regardless of s), and the distribution of o f ( f 0) =

s( f � f 0) + Z
s

is the convolution of two distributions. Suppose that n = 2r and B = 2b.

When (n/B) - ( f 0 � f ), it holds that r� b � s+ 1, and thus n/B is an integer multiple of

the distance between two consecutive distance in T. In this case it is easy to see that o f ( f 0)

is uniform on [n].

When ( f 0 � f )/(n/B) is even, it must hold that r� b  s� 1 and thus n/B  2s�1. The

support of o f ( f 0) is
[

odd `

h

2s`� n
2B

, 2s`+
n
2B

⌘

which leaves a gap of width at least 2n/B in the middle between two consecutive points in

T.

When ( f 0 � f )/(n/B) is odd, it must hold that r� b = s and thus n/B = 2s. The support

of o f ( f 0) therefore leaves a gap of width at least n/B in the middle between two consecutive

points in T. It is easy to see that o f ( f 0) is uniform on its support.

The next theorem, which bounds the moment generating function of bGof ( f 0), is a straight-

forward corollary of Lemma 3.2.31.

Lemma 3.2.32. Let n, s and b be as in Lemma 3.2.31. When f 6= f 0, E exp(l bGof ,s,b( f 0))  M(l).

Proof. When (n/B) - ( f � f 0),

E e
l

bGo f ( f
0
) 

✓

2
B
+

1
n

◆

el

+

✓

1� 2
B
� 1

n

◆

ele

= ele

✓

2
B
+

1
n

◆

(el(1�e) � 1) + 1
�

,

where the inequality follows from the fact that bG is at most 1 on [�n/B, n/B] as at most e

elsewhere (recall Definition 3.2.20), and the equality from rearranging the terms.

When f 0 � f ⌘ k(n/B) (mod n) for even k,

E e
l

bGo f ( f
0
)  ele,
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since the filter bG is at most e outside of [�n/B, n/B] and the distribution o f ( f 0) is not

supported on that interval by Lemma 3.2.31.

When f 0 � f ⌘ k(n/B) (mod n) for odd k,

E e
l

bGo f ( f
0
) 

✓

2
B
+

1
n

◆

el

+

✓

1� 2
B
� 1

n

◆

ele

= ele

✓

2
B
+

1
n

◆

(el(1�e) � 1) + 1
�

,

where the inequality follows again by combining Lemma 3.2.31(iii) and the bounds on bG

from Definition 3.2.20, and the equality is just a rearrangement of terms.

Finishing the Derandomization

We are now ready to verify (3.9)–(3.11).

Lemma 3.2.33 (Pessimistic Estimation). It holds that

hr( f , f 0; s1, b1, . . . , sr, br) � Pr
�

Af , f 0 |s1, b1, . . . , sr, br
�

.

Proof. Let z = Âr
`=1 Gof ,`( f 0). Then

Pr
�

Af , f 0 |s1, b1, . . . , sr, br
�

= Pr

 

z+
d

Â
`=r+1

Gof ,`( f 0) > b

!

= Pr

 

exp

(

l

 

z+
d

Â
`=r+1

Gof ,`( f 0)

!)

> elb

!

 e�lbelz E exp

 

l

d

Â
`=r+1

Gof ,`( f 0)

!

= e�lbelz
(E exp(lGof ( f 0)))

d�r

 e�lbelz
(M(l))

d�r,

where the last inequality follows from Lemma 3.2.32.

Lemma 3.2.34 (Initial constraint). It holds that

Â
f 6= f 0

h0( f , f 0) < 1.
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Proof. It follows from Lemma 3.2.32 that

(M(l))

d  exp
⇢

d
✓

le + ln
✓

1+
3
B
(el(1�e) � 1)

◆◆�

 exp
⇢

d
✓

le +

3
B
(el(1�e) � 1)

◆�

 exp
⇢

dl

✓

e +

3
B
(1� e)

◆�

 exp(3dl).

Recall that we choose B = Q(k) and d = O(k log n). It follows that

Â
f 6= f 0

h0( f , f 0) = e�lb Â
f 6= f 0

(M(l))

d

 n2 exp
⇢

�C
d
B
+ 3dl

�

 n2 exp(�cd/B) (by choosing l = c00/B for c00 small enough)

< 1.

Lemma 3.2.35 (Derandomization step). It holds that

hr( f , f 0; s1, b1, . . . , sr, br) � E
sr+1,br+1

hr+1( f , f 0; s1, b1, . . . , sr, br, sr+1, br+1)

Proof. Let z = Âr
`=1 G

(`)
o f ,r( f 0)

. The proposition is equivalent to

exp
(

lz
)

(M(l))

d�r � E
s,q

exp
⇣

l

⇣

z+ Gof ,r( f 0)

⌘⌘

(M(l))

d�r�1,

This clearly holds by Lemma 3.2.32.

3.2.5 Sublinear-Time Algorithm

In this section, we take the pseudorandom hashings {Hr}r2[d] to be as in Lemma 3.2.26 and

assume that (3.6) holds.

The first lemma concerns 1-sparse recovery, because, as in earlier works, we shall create

k subsignals using hashing, most of which are 1-sparse.
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Lemma 3.2.36. Suppose that n is a power of 2. Let Q = {0, 1, 2, 4, . . . , n/2} ✓ [n]. Then the

following holds: Let x 2 Cn and suppose that |bx f | � 3kbx
[n]\{ f }k for some f 2 [n]. Then one can

recover the frequency f from the samples xQ in O(log n) time.

Proof. Define q f 0 =
� 2p

n f 0
�

mod 2p. Observe that

xq =
1p
n

 

bx f e
p
�1qq f

+ Â
f 0 6= f

bx f 0e
p
�1qq f 0

!

, q 2 [n],

It follows from Proposition 3.2.25 that | arg xq � (arg x f + qq f )|  p/8. When q = 0, one

has | arg x0 � arg x f |  p/8, and thus | arg(xq/x0)� qq f |  p/4.

Hence,

q f 2 Iq, where Iq :=
q�1
[

`=0



2`p + arg(xq/x0)
q

� p

4q
,
2`p + arg(xq/x0)

q
+

p

4q

�

.

Note that Iq is the union of q disjoint intervals of length p/(2q). We may view these intervals

as arcs on the unit circle, each arc being of length p/(2q), and the left endpoints of every

two consecutive arcs having distance 2p/q.

Define a series of intervals {Sr} for r = 0, 1, . . . , log n� 1 recursively as

S0 = I1,

Sr+1 = Sr \ I2r+1 .

It is easy to see, via an inductive argument, that q f 2 Sr for all 0  r  log n � 1, and

|Sr|  p

2r+1 . In the end, Slog n�1 is an interval of length p/(2n), which can contain only one

q f 0 , and thus we can recover i.

Each Sr can be computed in O(1) time from Sr�1 and thus the overall runtime is

O(log n).

Now we move to develop our sublinear-time algorithm. The following is an immediate

corollary of Lemma 3.2.26.
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Lemma 3.2.37. For each f , it holds for at least 8d/10 indices r 2 [d] that
�

�

�

�

�

�

Â
f 02[n]\{ f }

bGof ,r( f 0)bx f

�

�

�

�

�

�

 10
(1� e)B

�

�

�

bx
[n]\{ f }

�

�

�

1
.

Proof. It follows from Lemma 3.2.26, Eq. (3.5) and the observation that Gof ,r( f ) 2 [1� e, 1].

As before, we choose B = 10(1� e)

�1
bk for some constant b to be determined. The

following is a lemma for Algorithm 14, which gives the same guarantees as Lemma 3.2.27.

Lemma 3.2.38. Suppose that x, bz, n be the input to Algorithm 14. Let w =

bx � bz. When n �
16
bkk bwk1, the output bw0 of Algorithm 14 satisfies

1. | bwf | � (7/16)n for all f 2 supp( bw0
).

2. | bwf � bw0
f |  | bwf |/7 for all i 2 supp( bw0

);

3. supp( bw0
) contains all f such that | bwf | � n;

Proof. The proof of (i) and (ii) are the same as the proof of Lemma 3.2.27. Next we prove

(iii). When | bwf | � n, we have

| bGof ,r(i) bwf | � (1� e)n � 16(1� e)

bk
k bw

[n]\{ f }k1.

Hence for the signal yr 2 Cn defined via its Fourier coefficients as

(

byr) f 0 = bGof ,r( f 0)bx f 0 ,

By Lemma 3.2.37, since 16(1� e) � 3, we see that yr with frequency f satisfies the condition

of Lemma 3.2.36 and thus it will be recovered in at least 8d/10 repetitions r 2 [d]. The

measurements are exactly (mH)h( f ) with q 2 Q. The thresholding argument is the same as

in the proof of Lemma 3.2.27.

Observe that Lemma 3.2.28 continues to hold if we replace Algorithm 13 with Algo-

rithm 14 and Lemma 3.2.27 with Lemma 3.2.38. Now we are ready to prove our main

theorem, Theorem 3.2.9, on the sublinear-time algorithm.
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Proof of Theorem 3.2.9. The recovery guarantee follows identically as in the proof of Theo-

rem 3.2.8.

The measurements are uq for q 2 Q in each of the d repetitions, and calculating each uq

requires O(k) measurements (Lemma 3.2.24). There measurements are reused throughout

the iteration in the overall algorithm, hence there are O(kd|Q|) = O(k · k log n · log n) =

O(k2 log2 n) measurements in total.

Each call to SubRecovery runs in time O(d(B log B + kbzk0 log n + B log n) + kd) =

O(k2 log2 n + kkbzk0 log2 n) = O(k2 log2 n), where we use the fact that kbzk = O(k) from

Lemma 3.2.28(a). The overall runtime is therefore O(k2 log3 n).

Algorithm 14 Sublinear-time Sparse Recovery for bx� bz
procedure SubRecovery(x, bz, n)

L = ∆
for r = 1 to d do

for each q 2 Q do . Q as in Lemma 3.2.36
uq  HashToBins(x, bz, (sr, q, br))

end for
for b = 1 to B do

f  OneSparseRecovery({(uq)b}q2Q)
L = L [ { f }
v f ,r = (u0)hr( f )

end for
end for
bw0  0
for each f 2 L do

v f  medianr v f ,r . median is taken over all r such that v f ,r exists
if |v f | � n/2 then

bw0
f  v f

end if
end for
return bw0

end procedure

3.2.6 Incoherent Matrices via Subsampling DFT Matrix

Consider an N ⇥ N unitary matrix A and assume that |Ai,j|  C/
p
n for all i, j. Our goal

in this section is to show how to sample deterministically m = Cmk2 log n rows of A, and
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re-weight them by
p n

m , obtaining a matrix B, such that |hBi, Bji|  1/k for all pairs i 6= j.

Let d1, . . . , dn be i.i.d. Bernoulli variables with Pr(d` = 1) = p, for some p = m/n. Let

i, j 2 [n] such that i 6= j, then

hBi, Bji = Ầ d`A`,iA`,j.

Let z` = A`,iA`,j, then |z`|  h, where h = C2/n. We consider the real and the imaginary

parts separately, since for a complex random variable Z,

Pr(|Z| > t)  Pr
✓

|<Z| > tp
2

◆

+ Pr
✓

|=Z| > tp
2

◆

.

Hence it suffices to consider the real variable problem as follows. Suppose that a1, . . . , an 2 R

satisfy |ai|  h, and consider the centred sum S = Âi(di � p)ai. We wish to find d1, . . . , dn

deterministically such that |S|  cm/(kn), where c > 0 is an absolute constant to be

determined.

Define the pessimistic estimator to be

fr(d1, . . . , dr) = e�lt

 

el Âr
i=1(di�p)ai

n

’
i=r+1

Mi(l) + e�l Âr
i=1(di�p)ai

n

’
i=r+1

Mi(�l)

!

The moment generating function of (di � p)ai is

Mi(l) = pel(1�p)ai
+ (1� p)e�lpai , i = 1, . . . , n.

Pessimistic Estimation Let w = Âr
i=1(di � p)ai, where d1, . . . , dr have been fixed.

Pr(|S| > t|d1, . . . , dr) = Pr(S > t|d1, . . . , dr) + Pr(�S > t|d1, . . . , dr)

= Pr(elS > elt|d1, . . . , dr) + Pr(e�lS > elt|d1, . . . , dr)

 e�lt E(elS
+ e�lS|d1, . . . , dr)

= e�lt

 

elw
n

’
i=r+1

Mi(l) + e�lw
n

’
i=r+1

Mi(�l)

!

= fr(d1, . . . , dr).
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Derandomization step One can show first that

fr(d1, . . . , dr) = p fr(d1, . . . , dr, 1) + (1� p) fr(d1, . . . , dr, 0), (3.12)

which is equivalent to

elwMr+1(l)
n

’
i=r+2

Mi(l) + elwMr+1(�l)

n

’
i=r+2

Mi(�l) = pM0
+ (1� p)M00, (3.13)

where

M0
= el(w+(1�p)ai)

n

’
i=r+2

Mi(l) + e�l(w+(1�p)ai)
n

’
i=r+2

Mi(�l),

M00
= el(w�pai)

n

’
i=r+2

Mi(l) + e�l(w�pai)
n

’
i=r+2

Mi(�l).

It is now clear that the left-hand side of (3.13) is pM0
+ (1� p)M00, and therefore (3.12)

holds. This implies that

fr(d1, . . . , dr) � min{ fr(d1, . . . , dr, 1), fr(d1, . . . , dr, 0)}.

Initial condition This is a standard argument for Bernstein’s inequality. For notational

convenience, let f(x) = (elx � lx� 1)/x2. Note that f(x) is increasing on (0,•). Using

Taylor’s expansion, one can bound that (see [BLM13, p35])

Mi(l)  exp
�

f(|ai|)p(1� p)a2i
�

 exp
�

f(h)p(1� p)a2i
�

.

and (see [Tro15, p98])

f(h)  l

2/2
1� lh/3

, l <
3
h

.

It then follows (see [Tro15, p98]) that

Pr(|S| > t)  2e�ltef(h)p(1�p)Âi |ai |2

 2 exp
✓

�lt+ nh

2p(1� p)
l

2/2
1� lh/3

◆

 2 exp
✓

� t2/2
nh

2p(1� p) + th/3

◆

,
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provided that l = t/(nh

2p(1� p) + th/3) 2 (0, 3/h).

When t = m/(kn), p = m/n and h = C2/n, l ' log n < 3/h and the above probability

is at most

2 exp
✓

� 1
2(C4

+

c
3 )

· m
k2

◆

 2 exp(�c0Cm log n)  1
n3

,

provided that Cm is large enough.

Therefore at step r, the algorithm minimizes fr+1(d1, . . . , dr+1) by choosing dr+1, and at

the end of step r+ 1, all d1, . . . , dr have been fixed and such that |Âi(di � p)ai|  t.

Now we return to the original incoherence problem in the complex case. We can define

2n(n� 1) events, Ei,j and Fi,j, for every pair i 6= j as

Ei,j =
�

|<hBi, Bji| > t
 

, Fi,j =
�

|=hBi, Bji| > t
 

For each pair of i 6= j, using the preceding argument, we have pessimistic estimators

f 1r (i, j; d1, . . . , dr) by setting a` = <Bi,`B`,i and f 2r (i, j; d1, . . . , dr) by setting a` = =Bi,`B`,j such

that

• (pessimistic estimation)

f 1r (i, j; d1, . . . , dr) � Pr(Ei,j|d1, . . . , dr)

f 2r (i, j; d1, . . . , dr) � Pr(Fi,j|d1, . . . , dr)

• (derandomization step)

f sr (i, j; d1, . . . , dr) = p f sr+1(i, j; d1, . . . , dr, 1) + (1� p) f sr+1(i, j; d1, . . . , dr, 0), s = 1, 2

(3.14)

• (initial condition)

Â
i 6=j

f 10 (i, j) + f 20 (i, j) <
1
n
.
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Note that (3.14) implies

Â
i 6=j

h

f 1r (i, j; d1, . . . , dr) + f 2r (i, j; d1, . . . , dr)
i

� min
dr+12{0,1}

Â
i 6=j

h

f 1r (i, j; d1, . . . , dr, dr+1) + f 2r (i, j; d1, . . . , dr, dr+1)
i

.

In addition, we also need to control the number of di’s which take value 1; we want

this number to be O(m). This can be achieved by combining another derandomization

procedure on Âi di using one-sided Chernoff bounds. Define the event G = {Âi di > 2m}.

Then

Pr(G|d1, . . . , dr)  exp

 

�2mk + k

r

Â
i=1

di

!

n

’
i=r+1

E ekdi

= exp

 

�2mk + k

r

Â
i=1

di

!

(M(k))

n�r,

where

M(k) = E ekdi
= pep + 1� p

is the moment generating function of di. Define our pessimistic estimator to be

gr(d1, . . . , dr) = exp

 

�2mk + k

r

Â
i=1

di

!

(M(k))

n�r,

then, similar to the proof in Section 3.2.4, we have

• (pessimistic estimation)

g(d1, . . . , dr) � Pr(G|d1, . . . , dr),

• (derandomization step)

gr(i, j; d1, . . . , dr) � pgr+1(i, j; d1, . . . , dr, 1) + (1� p)gr+1(i, j; d1, . . . , dr, 0),

• (initial condition)

g0 <
1
2
.
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Overall, our standard derandomization procedure, which at step r chooses dr+1 2 {0, 1}

that minimizes

Â
i 6=j

h

f 1r+1(i, j; d1, . . . , dr, dr+1) + f 2r+1(i, j; d1, . . . , dr, dr+1)
i

+ gr+1(d1, . . . , dr, dr+1)

will find d1, . . . , dr such that none of Ei,j and Fi,j and G holds, which implies that |hBi, Bji|  t

for all i 6= j and Â di  2m. That is, we have chosen 2m rows of A, obtaining a matrix B of

incoherence at most m/(kn).

3.2.7 Incoherent Matrices via the Weil bound

We shall use the following classical bound of Weil on character sums (see, e.g. [Sch76, p44]).

Theorem 3.2.39 (Weil Bound). Let q be a prime number and let Fq be the finite field of order q. Let

g(x) be a polynomial of degree d > 0 and y : Fq ! C⇤ be a nontrivial additive character. If d < q

and gcd(d, q) = 1 then
�

�

�

�

�

Â
x2Fq

y(g(x))

�

�

�

�

�

 (d� 1)
p
q

The function y(x) = e(�2p

p
�1rx)/q is a nontrivial additive character for Fq = Zq, for

each 1  r < q.

Consider a collection P of non-zero polynomials of degree at most d < 1. The size of P

is qd+1 � 1. For every such polynomial g 2 P define vector

(vg)x = y(g(x)),

for x 2 Fq. Observe that the inner product between two vectors vg and vg0 equals to

Â
x2Fq

y(g(x))y0
(g(x)) = Â

x2Fq

y(g(x)� g0(x)),

which, by applying Weil’s bound, is bounded in magnitude by (d� 1)pq.

We construct a matrix A 2 Cm⇥n whose columns are the vectors {vg}g2P , re-weighted
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by 1/
p
m, so that they have the unit norm. We set

d =

⇠

c
log n

log k+ log log n

⇡

for some absolute constant c, to obtain

m = O

 

k2
✓

log n
log k+ log log n

◆2
!

.

Now, (d� 1)/q = Q(1/k), and thus the matrix A is (c0/k)-incoherent for some absolute

constant c0. We now finish the proof by rescaling k.

Remark 3.2.40. As we have already mentioned, the lower bound on the number of rows of any

incoherent matrix is W(k logk n), due to Alon [Alo09]. Our construction above uses O(k2
(

logk n)
2
)

samples. In the regime where k is a fractional power of n, this is always better than the random

construction (Theorem 3.2.11) and matches the aforementioend lower bound.

Remark 3.2.41. Our construction above has a similar spirit to the Reed-Solomon construction in

[NNW14]; both identify the columns of the matrix with the set of all low-degree polynomials over a

finite field. However, we need a much stronger and deep result from number theory in order to show

the incoherence result, in contrast to [NNW14].

3.2.8 Reduction of the `• norm

Lemma 3.2.42. Suppose that x, bz, n be the input to Algorithm 14. Let w =

bx � bz. When n �
16
bkk bwk1, the output bw0 of Algorithm 14 satisfies

1. | bwf | � (7/16)n for all i 2 supp( bw0
).

2. | bwf � bw0
f |  | bwf |/7 for all i 2 supp( bw0

);

3. supp( bw0
) contains all i such that | bwf | � n;

Proof. By the recovery guarantee we know that

| bwf � bw0
f | 

kwk1
bk

 n

16
.
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By thresholding, it must hold for i 2 supp( bw0
) that | bw0

f | � n/2 and thus

| bwf | �
n

2
� n

16
=

7
16

n,

which proves (i). Thus

| bwf � bw0
f | 

n

16
 1

7
| bwf |,

which proves (ii). Next we prove (iii). When | bwf | � n, we have

| bGof ,r( f ) bwf | � (1� e)n � 16(1� e)

bk
k bw

[n]\{ f }k1.

Hence for the signal yr 2 Cn defined via its Fourier coefficients as

(

byr) f 0 = bGoi,r(j)bx f 0 ,

By Lemma 3.2.37, since 16(1� e) � 3, we see that yr with index i satisfies the condition

of Lemma 3.2.36 and thus it will be recovered in at least 8d/10 indices r 2 [d]. The

measurements are exactly (mH)h(i) with q 2 Q. The recovered estimate is at least n� n/16 >

n/2 and thus the median estimate will pass the thresholding, and i 2 supp( bw0
).

Let H = H(x, k) and I = { f : |bx f | � 1
rkkx�kk1}. By the SNR assumption of bx, we have

that kbxHk1  kkbxk•  R⇤kbx�kk1 and thus kbxk1  (R⇤
+ 1)kbx�kk1. Let r(t) be the residual

vector at the beginning of the t-th step in the iteration. The threshold in the t-th step is

n

(t)
= Cµg

T�t,

where C � 1,g > 1 are constants to be determined.

Lemma 3.2.43. There exist C, b, r,g such that it holds for all 0  t  T that

1. bx f = r(t)f for all f /2 I;

2. |r(t)f |  |bx f | for all f .

3. kr(t)f k•  n

(t);
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Proof. We prove the three properties inductively. The base case is t = 0, where all properties

clearly hold, noticing that µg

T
= kxk•.

Next we prove the inductive step from t to t+ 1. Note that

kr(t)k1  kr(t)H k1 + kr(t)Hck1

= kr(t)H\Ik1 + kr(t)H\Ik1 + kx�kk1

 k · krIk• + k · 1
rk

kx�kk1 + kx�kk1

 k · Cµg

T�t
+

✓

1+
1
r

◆

kx�kk1

= Cg

T�tkx�kk1 +
✓

1+
1
r

◆

kx�kk1

When

C
✓

1� 16
r

◆

� 16
b

✓

1+
1
r

◆

, (3.15)

it holds that

n

(t) � 16
bk

kr(t)k1

and thus Lemma 3.2.42 applies.

From Lemma 3.2.42(i), we know that when

7
16

C � 1
r

, (3.16)

no coordinates in Ic will be modified. This proves (a).

Lemma 3.2.42(ii) implies (b).

To prove (c), let J = { f 2 I : |r(t)f | � n

(t+1)}. By Lemma 3.2.42(iii), all coordinates in J

will be recovered. Hence for f 2 J,

|r(t+1)
f |  1

7
|r(t)f |  1

7
n

(t)  n

(t+1),

provided that
1
7
 1

g

. (3.17)

For f 2 I \ J, the definition of J implies that |r(t+1)
f |  n

(t+1). This proves (c).
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We can take C = 2, r = 32, b = 32, g = 2, which satisfy all the constraints (3.15), (3.16)

and (3.17).
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Chapter 4

Sparse Recovery and the Design of

Exact Algorithms

4.1 Nearly Optimal Sparse Polynomial Multiplication

4.1.1 Preliminaries

We will be concerned with polynomials with integer coefficients. This suffices for most

applications, since numbers in a machine are represented using floating point arithmetic.

We denote by Zn the ring of residue modulo n and by [n] the set {0, 1, . . . n� 1}. We define

the convolution of two vectors x, y 2 Rn as the n-dimensional vector x ⇤ y such that

(x ⇤ y)i = Â
j,j02[n]⇥[n]:(j+j0) mod N=i

xjyj0 .

The convolution of two vectors is immediatelly related with polynomial multiplication: if

f (x) = Ân
j=0 ajxj and g(x) = Ân

j=0 b jxj, we have that the polynomial ( f · g)(x) = Â2n
j=0 cjxj

satisfies c = a ⇤ b, where c = (c0, c1, ... . . . , c2n, 0 . . . , 0) 2 ZN , a = (a0, a1, . . . , an, 0, . . . , 0) 2

ZN , b = (b0, b1, . . . , bn, 0, . . . , 0) 2 ZN , for N � 2n. It is known that x ⇤ y can be computed

from x and y in time O(n log n) via the Fast Fourier Transform. Throughout this subchapter

we assume that we work on a machine where the word size is w = W(log n), and elementary

operations between two integers given as part of the input can be done in O(1) time. For a
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complex number z we denote by |z| its magnitude, and by arg(f) its phase.

4.1.2 Result and Proof

In this subsection we prove the following result.

Theorem 4.1.1. Let x, y 2 Zn, given as lists of their non-zero coordinates along with their values.

Set a = kxk0, b = kyk0, k = kx ⇤ yk0 + 4. Then, with probability 99/100, we can compute a list

which contains the non-zero coefficients and values of x ⇤ y in time

O(k log2 n · log(k log n) + (a+ b) log k log n · log log n) + eO(log4 n).

We proceed by building the tools needed for the proof of theorem 4.1.1. In what folows

w is an nth root of unity; our algorithm should treat it as rounded in order to fit in the word

size, since we are dealing with floating point numbers. We can also assume that n is a prime

number. For that, if n � 21, we may sample eO(log n) numbers in the interval [n, 2n] and

run the Miller-Rabin test to check whether anyone of them is prime. A standard fact about

the distribution of primes implies that after eO(log n) samples, we will find with constant

probability such a prime, for a total of eO(log3 n) time. Thus, in what follows n is a prime

number. The following operator is particularly important for our algorithm.

Definition 4.1.2. Let x 2 Zn. Define function h : [n] ! [m] by

hm(i) = i mod m.

Moreover, define Pm(x) 2 Zm to be such that

(

Pm(x))i = Â
j2[n]:hm(j)=i

xj · w

j, 8i 2 [m].

Lemma 4.1.3. Given vectors x, y,w 2 Zn the vector Pm((x ⇤ y)� w) can be computed in time

O(

(

kxk0 + kyk0 + kwk0) log n+m logm).
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Proof. First, note that

Pm((x ⇤ y)� w) = Pm(x ⇤ y)� Pm(w),

since Pm is a linear operator. We compute Pm(x),Pm(y),Pm(w) in timeO(m+

(

kxk0 + kyk0 + kwk0) log n)

by computing w

j for all j 2 supp(x) [ supp(y) [ supp(w) using Taylor expansion of sine

and cosine functions and keeping the first Q(log n) digits. We then compute, via the Fast

Fourier Transform in time O(m logm), the vector Pm(x) ⇤ Pm(y). We claim that

(

Pm(x ⇤ y))i = (

Pm(x) ⇤ Pm(y))i .

Our claim is proved via the following chain of equalities:

(

Pm(x) ⇤ Pm(y))i = (4.1)

Â
`,`02[m]:(`+`0) mod m=i

(Pm(x))` · (Pm(y))`0 = (4.2)

Â
`,`02[m]:(`+`0) mod m=i

0

@ Â
j2[n]:hm(j)=`

xjw j

1

A ·

0

@ Â
j02[n]:hm(j0)=`0

yj0 · w

j0

1

A

= (4.3)

Â
`,`02[m]:(`+`0) mod m=i

0

@ Â
j,j02[n]:hm(j)=`,hm(j0)=`0

xjyj0w j+j0

1

A

= (4.4)

Â
`,`02[m],j,j02[n]:hm(j)=`,hm(j0)=`0,(`+`0) mod m=i

xjyj0w j+j0
= (4.5)

Â
j,j02[n]:(hm(j)+hm(j0)) mod m=i

xjyj0w j+j0
= (4.6)

Â
j,j02[n]:hm((j+j0) mod m))=i

xjyj0w j+j0
= (4.7)

Â
j002[n],hm(j00 mod m)=i

Â
j,j02[n]:j+j0=j00

xjyj0w j00
= (4.8)

Â
j002[n],hm(j00 mod m)=i

w

j00

0

@ Â
j,j02[n]:j+j0=j00

xjyj0

1

A

= (4.9)

Â
j002[n],hm(j00)=i

w

j00
(

x ⇤ y
)j00 , (4.10)

where (1) to (2) follows by defition of convolution, (2) to (3) by definition of the PB
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operator, (3) to (4) by expanding the product in (2), (5) to (6) by the trivial fact each element

in [n] is mapped uniquely to some element in [B] via hm, (6) to (7) by the fact that (hm(a) +

hm(b)) mod m = (a mod m+ b mod m) mod m = (a+ b) mod m = (h(a+ b) mod m)),

(7) to (8) by introducing the auxilliary variabe j00 = j + j0, (8) to (9) by the fact that w

j00

can be pulled outside of the inner sum since in that scope j00 is fixed, and (9) to (10) since

hm(j00 mod m) = (j00 mod m) mod m = (j00 mod m) = hm(j00) and the fact that the inner

sum is the definition of convolution evaluated at point j00.

In what follows C is some sufficiently large absolute constant.

Algorithm 15 Locate(x, y,w, B, d)
L  ∆
for t 2 [5dlog(1/d)e] do

Pick random prime p in [CB log2 n].
Compute Pp((x ⇤ y)� w), using Lemma 4.1.3.
for b 2 [p] do

if (Pp((x ⇤ y)� w))b 6= 0 then
v  |(Pp((x ⇤ y)� w))b|.
ar  (Pp((x ⇤ y)� w))b/|(Pp((x ⇤ y)� w))b|.
Compute i from ar using Lemma 4.1.5
L  L [ {(i, v)}

end if
end for

end for
Prune L to keep pairs (i, v), which appear at least (3/4) · 5 log(1/d) times.
z  ~0 2 Rn

for (i, v) 2 L do
zi  v

end for
Return z

The following Lemma is important, since we are dealing with numbers with finite

precision.

Lemma 4.1.4. Let a, b 2 [n] with a 6= b. If w is rounded such that it fits in the word size, then

|wa � w

b| > 1/n.

Proof. The quantity is minimized when a = b + 1. If n sufficiently large, it can then be

approximated by an arc of length 2p/n, and since the word size w is W(log n), for sufficiently
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Algorithm 16 HashAndIterate(x, y, B, d)

w(0)  0
for r = 1 to dlog Be do

dr  d/ log B
Br  B · 2�r+1

z  Locate(x, y,w(r), Br, dr)
w(r)  w(r)

+ z
end for
Return w(dlog Be)

large constant we get the desired result.

The follows Lemma is a crucial building block of our algorithm.

Lemma 4.1.5. Given w

j for j 2 [n], one can find j in time O(log n) (whether or not w is rounded

to fit the word size).

Proof. From the pair (real part of w

j,imaginary of w

j) we can find in which of the four

following sets j lies in

{0, . . . , dn/4e},

{dn/4e+ 1, . . . , dn/2e}

{dn/2e+ 1, . . . , d3n/2e}

{d3n/2e+ 1, . . . , n� 1}

since each one corresponds to an arc of length p/4 of the complex circle. After detecting the

set (equivalently the corresponding arc of the complex circle) one can perform a standard

ternary search to find j. Due to Lemma 4.1.4 O(log n) iterations suffice to find j.

The following Lemma is standard in the sparse recovery literature, but we give its proof

for completeness. C is a large enough absolute constant.

Lemma 4.1.6. Let an integer B such that B > C · k(x ⇤ y)� wk0, and let p be chosen at random

from [CB log2 n]. Then, with probability 1� p, there exist at least (1� g)k(x ⇤ y)� w)k0 indices
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j 2 supp((x ⇤ y)� w) such that

8j0 2 supp((x ⇤ y)� w) \ {j} : hp(j0) 6= hp(j),

where 2C�2/p = g.

Proof. Let j, j0 2 supp((x ⇤ y) � w), with j 6= j0. The hash function hp is not pairwise

independent, but the following property, which suffices for our purpose, holds

P
⇥

hp(j) = hp(j0)
⇤

 1/B.

To see that, observe first that in order for hp(j) = hp(j0) to hold, it must be the case that

p is a divisor of j� j0. Since j� j0  n there there can be at most dlog ne prime divisors of

j� j0, otherwise j� j0 would be at least 2dlog ne+1 > n. By the prime number Theorem, there

exist at least (C/2)B log n primes in [CB log2 n], and hence a random prime will be one of

the divisors of j� j0 with probability 2/(CB).

By the above discussion, the random variable Xj, defined to be the indicator variable of

the event

Ej : 9j0 2 supp((x ⇤ y)� w) \ {j} : hp(j) = hp(j0)

has expected value E
⇥

Xj
⇤

= P
⇥

Ej holds
⇤

 (k(x ⇤ y)� w)k0 � 1) · (2/CB)  2C�2, by

a union-bound. Now, we have that

E

2

4 Â
j2supp((x⇤y)�w)

Xj

3

5  (2C�2
)k(x ⇤ y)� wk0.

By Markov’s inequality, with probability 1� p there exist at most gk(x ⇤ y)�wk0 indices

j 2 supp((x ⇤ y) � w) such that Xj = 1, if 2C�2/p = g. This finishes the proof of the

claim.

The following argument is pretty standard in the sparse recovery literature, we give its

proof for completeness.

Lemma 4.1.7. Let the constants C,g, p be as in Lemma 4.1.6 with p  2�12/5, and assume that

B > Ck(x ⇤ y)�wk0. If (x ⇤ y)�w is not the zero vector, then with probability 1� d the subroutine
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Locate(x, y,w, B, d) returns a vector z such that

kz� ((x ⇤ y)� w)k0  (5g)k(x ⇤ y)� w)k0.

Proof. Fix t 2 [5 log(1/d)], and assume that p,C,g satisfy pC�2/p = g We have that

(Pp(x ⇤ y))i � (Pp(w))i = (Pp(x ⇤ y� w))i =

Â
j2[n]:hp(j)=i

((x ⇤ y)� w)jw j
=

Â
j2[n]:hp(j)=i and ((x⇤y)�w)j 6=0

((x ⇤ y)� w)jw j

The condition of Lemma 4.1.6 hold, so with probability �p the its conclusion also

holds. Condition on that event and consider the at least (1� g)k(x ⇤ y)� wk0 indices in

k(x ⇤ y)� wk0, for which the conclusion of Lemma 4.1.6 holds. Fix such an index j⇤ and let

i⇤ = hp(j⇤). Due to the isolation property, we have that

(Pp(x ⇤ y))i⇤ � (Pp(w))i⇤ = ((x ⇤ y)j⇤ � wj⇤)w
j⇤ .

Now, due to Lemma 4.1.4 subroutine Locate(x, y,w, B, d) will infer j⇤ correctly from

(P
s,B(x ⇤ y))i⇤ � (P

s,Bw)i⇤ , as well as (x ⇤ y)j⇤ �wj⇤ . We will say j⇤ is recognised in repetition

t.

For the rest of the proof, unfix t. Since the conclusion of Lemma 4.1.6 holds with

probability 1� p, the number of t 2 [5 log(1/d)] for which the conclusion of the Lemma

holds is at least 4 log(1/d) with probability 1� d since

✓

5 log(1/d)

(5/2) log(1/d)

◆

p(5/2) log(1/d)  25 log(1/d)p(5/2) log(1/d)  d,

as long as p  2�12/5·.

Let us call, for convenience, that above pairs good. Thus, with probability 1� d the

number of pairs (j, t) for which j is not recognised in repetition t is at most

g · 4 log(1/d) · k(x ⇤ y)� wk0 + log(1/d)k(x ⇤ y)� wk0.
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Hence there exist at most b = 4gk(x ⇤ y)� wk0 indices which are recognized in less than

(3/4) · 5 log(1/d) repetitions, otherwise the number of not good pairs (j, t) is at least

1+ b · 1
4
· 5 log(1/d)k(x ⇤ y)�wk0 > g · 4 log(1/d) · k(x ⇤ y)�wk0+ log(1/d)k(x ⇤ y)�wk0

which does not hold for k(x ⇤ y)� wk0 > 0. Moreover, there can be at most gk(x ⇤ y)�

wk0 indices that do not belong in supp((x ⇤ y)� w), and which were mistakenly inserted

into z. This gives in total the factor of 5g.

Lemma 4.1.8. Let g < 1/10, and let also B be an integer such that B > Ck(x ⇤ y)k0. Then

the routine HashAndIterate(x, y, B, d) returns an kx ⇤ yk0-sparse vector r such that r = x ⇤ y,

with probability 1� d. Moreover, the running time is O((B log2 n log(B log2 n) + kxk0 log n+

kyk0 log n) · (log log B+ log(1/d))).

Proof. It is an easy induction to show that at each step k(x ⇤ y)�w(r)k0  (5g)

rkx ⇤ yk0, with

probability 1� dr/ log B, so the total failure probability is d. Conditioned on the previous

events happending, we have x ⇤ y � w(dlog Be) is the all-zeroes vector since kx ⇤ yk0 

(4g)

dlog Bek(x ⇤ y)� wk0 < 1. This gives that w(dlog Be)
= x ⇤ y.

The running time for Locate(x, y,w, Br, dr), since kwk0  2B at all times is (ignoring

constant factors for ease of exposition)

(Br log2 n log(Br log2 n) + (kxk0 + kyk0 + B) log n) · log(1/dr),

‘ where the factor is obtained Br log2 n log(Br log2 n) + kxk0 log n+ kyk0 log n+ B log n due

to Lemma 4.1.3, and Br log n due to Lemma 4.1.5.

So the total running time of HashAndIterate(x, y, B, d) becomes, by summing over all

dlog Be rounds (ignoring constant factors for ease of exposition)

⇣

B log2 n log(B log2 n) + log n(kxk0 + kyk0)
⌘

log(log B/d).
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The following Lemma is a standard fact which follows by the fact that a degree n

polynomial over Zp has at most n roots. We give a sketch of the proof.

Lemma 4.1.9. There exists a procedure EqualityTesting(x, y,w), which runs in time O(kxk0 +

kyk0 + kwk0) log n log(1/d) +

eO(log3 n · log(1/d)), and answers whether x ⇤ y = w with proba-

bility 1� d.

Proof. Let c0 large enough. We pick a random prime in [c0n log n, 2c0n log n], by picking a

random number in that interval and running the Miler-Rabin primality test with target

failure probability d. We form polynomials fx, fy, fw that have x, y,w as their coefficients

respectively. We then pick Q(log(1/d) random elements in Zp and check whether ( fx(r) ·

fy(r)) mod p = fw(r) mod p or not. We return Yes if this is the case for all chosen, and No

otherwise.

We are now ready to prove our main theorem.

Proof. Let c be a sufficiently small constant and C a sufficiently large constant. For r =

0, 1, 2, . . ., one by one we set Br  C · 2r and dr = c · r�2, run HashAndIterate(x, y, Br, dr) to

obtain z, and feed it to EqualityTesting(x, y, z, 1
200 log n ). We stop when the latter procedure

returns Yes. The total failure probability thus is at most

log n · 1
200 log n

+ Â
r�1

dr =
1

200
+ Â

r�1
cr�2  99

100
.

Conditioned on the aforementioned event happening, the total running time is (ignoring

constants)

kx ⇤ yk0 log2 n(kx ⇤ yk0 log2 n) log log n+ (kxk0 + kyk0) log kx ⇤ yk0 log n log log n+ eO(log4 n),

by a straighforward summation of the expression in Lemma 4.1.8 over all rounds

O(log kx ⇤ yk0) = O(log n) rounds, as well as Lemma 4.1.9.
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4.1.3 Discussion

The crux of our argument is that the operator Pm in defition 4.1.2 is convolution-preserving.

Actually, any choice of the number w, and not just some root of unity, would make the

aboe operator be convolution-preserving, but our particular choice is crucial. First of all,

the problem of finding j from w

j should be easy, and moreover w

j for any j should remain

bounded, otherwise we would need to manipulate numbers with an enormous number of

digits (even up to n), something that would be prohibitive for the runtime. Thus, choosing

w to be an nth root of unity seems a good choice. The iterative loop technique is standard

in the sparse recovery literature, see for example [GLPS10, HIKP12a, GLPS17].

4.1.4 Multivariate Polynomials

We discuss how our algorithm extends to multivariate polynomials. It suffices to solve the

d-dimensional version of the sparse convolution problem: given x~i = xi1,i2,...,id , y~i = yi1,i2,...,id

with 0  ij  nj � 1, their d-dimensional convolution is the vector (x ⇤ y) the~i = (i1, . . . , id)

coordinate of which is

(x ⇤ y)~i = Â
~j,~j02[n1]⇥[n2]⇥...⇥[nd]:~j+~j0=~i

x~j · y~j0 ,

where the addition of two vectors should be done component-wise over Znj in the jth

coordinate. The reasonable extension of the function hm would be

hm(i) = (

i1 + i2 · n1 + i3 · n1n2 + . . .+ id · n1n2 . . . nd�1) mod m.

Thus, reasonable extension of the operator P would be to define it as the (n1n2 . . . nd)-

dimensional vector the ith coordinate of which is

(Pm)i = Â
~j2[n1]⇥[n2]⇥...⇥[nd]:hm(j)=i

x~jw
i
n1
+

i2
n1n2

+...+ id
n1n2...nd .

where w is now defined as e2p

p
�1. It is not hard to see that the operator again is

convolution-preserving and from w

i
n1
+

i2
n1n2

+...+ id
n1n2...nd we can infer i1, . . . in inO(log(n1n2 . . . nd))
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time by first performing a ternary search in the complex circle i, and then learning first i1,

then i2, so on so forth.

One would also need to use the Schwartz-Zippel lemma to perform the test we performed

in Lemma 4.1.9.

4.2 Modular Subset Sum in Almost Linear Time. Deterministi-

cally

4.2.1 Preliminaries

For a positive integer m, we let [m] = {0, 1 . . . ,m� 1} and Zm be the group of residues

modulo m. For two sets A, B ✓ Zm, we define A+ B = {x, 9(a, b) 2 A⇥ B : a+ b = x}.

Similarly, A� B = {x, 9(a, b) 2 A⇥ B : a� b = x}. We also let A mod m = {a mod m, a 2

A}. We define

S(A) = {x 2 Zm : 9C ✓ A, Â
c2C

c = x}

to be the set of all attainable subset sums of a set A. For two real-valued m-dimensional

vectors v, u we define their cyclic convolution v ⇤ y as the m-dimensional vector which for

i 2 [m] satisfies

(v ⇤ u)i = Â
j,j02Zm⇥Zm :j+j0=i

ujvj0 = Â
j,j02[m]⇥[m]:(j+j0) mod m=i

ujvj0

For a function f : N ! N we define eO( f ) = O( f logc f ) for some absolute constant f .

4.2.2 Results

Our algorithms solve the harder problem of producing all attainable subset sums. The

randomized algorithm is output-sensitive, and the deterministic algorithm has a “small”

additional multiplicative factor mo(1) in its runtime complexity, which would be reduced

with any improvement in the deterministic version of sumset computation. The main result

of this subchapter is the following.
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Theorem 4.2.1. (All attainable subset sums: deterministic version) Let S ✓ Zm be a multiset with

n elements. Then one can find S(S) in time (|S(S)|+ n)mo(1), deterministically. More precisely,

the algorithm runs in time eO((|S(S)|+ n)2O(

p
log |S(S)| log logm)

).

The randomized version easily follows by our main approach, just by substituting

algorithm 4.2.7 with 4.2.8.

Theorem 4.2.2. (All attainable subset sums: randomized version) Let S ✓ Zm be a multiset with n

elements. Then one can find S(S) in expected eO(|S(S)|+ n) · log3 m time1.

For n < m are algorithms become O(m1+o(1)
) and eO(m) respectively, in terms of their

dependence on m. We note that the randomized algorithm of Axiotis et.al. is also output-

sensitive, but it is Monte-Carlo, in contrast to Theorem 4.2.2 which is Las Vegas.

Along the way, we also obtain a state of the art algorithm for deterministic sumset

computation. Since sumset computation is a fundamental computational primitive, we

believe that this result is of independent interest. Our algorithm makes efficient an algorithm

of Chan and Lewenstein [CL15], which operated in a more restrictive scenario. The authors

posed it as an open question, see Section 8, Remark 8.1 and 8.2 of [CL15].

Theorem 4.2.3. (Deterministic Sumset Computation) Given two sets A, B ✓ Zm, one can find

A+ B in time O(|A+ B|mo(1)
). In specific, the running time can be bounded by

eO(|A+ B| · 2O(

p
log |A+B| log logm)

).

4.2.3 Technical Toolkit

4.2.4 Symmetry group and its properties

Definition 4.2.4. (Symmetry group of a set)

Let A be a subset of Zm. We define the symmetry group of A as Sym(A) = {h 2 Zm : A+ h =

A}. The set Sym(A) satisfies the group properties on Zm with respect to addition.

1In fact, the log3 m factor can be reduced to log3 |S(S)|, see also the comment under Theorem 4.2.8
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Since Sym(A) is a group over Zm with respect to addition, it holds that Sym(A) =

d ·Zm/d, where d is the minimum non-zero element of Sym(A).

It is easy to see that Sym(A) ✓ Sym(A+ B), for any two sets A, B ✓ Zm; this property

will be of great importance to us. Moreover, for any x 2 A, Sym(A) ✓ {x} � A. This

follows since any h 2 Sym(A) should map x to some x0 2 A, which means x = x0 + h, hence

h = x� x0. Thus the symmetry group of a set A has size at most |A|. The following result

is proven in the appendix.

Theorem 4.2.5. (Computing the symmetry group) Given a set A ✓ Zm, we can find Sym(A) in

time O(|A|).

4.2.5 Computing the Sumset of Two Sets

Definition 4.2.6 (The Sumset Problem). Given two sets A, B ✓ Zm, compute A+ B.

The following theorem is proven in the appendix.

Theorem 4.2.7. [Output-sensitive sumset: deterrministic version] For two sets A, B ✓ Zm, the

sumset problem can be solved in time

O
⇣

|A+ B|mo(1)
⌘

In the appendix we also give a self-contained proof of the following result, which can be

obtained also from previous work in the literature, see [CH02]. However, we give a novel,

and, we believe, simpler algorithm.

Theorem 4.2.8. [Output-sensitive sumset: randomized version] For two sets A, B ✓ Zm the sumset

problem can be solved in expected time

O
⇣

|A+ B| log3 m
⌘

.

In fact, one should be able to turn the logm factors in the above theorem factors to

log |A+ B| by using Dietzfelbinger’s hash function as in [BDP05], but for ease of exposition

and since this is not our main result we do not elaborate on it.
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It is obvious that the sumset problem is a special case of the sparse convolution problem,

where one is asked to compute the convolution of two sparse vectors in output sensitive

time.

4.2.6 Cauchy-Davenport and Kneser’s Theorem

The following theorems lie at the core of our algorithm.

Theorem 4.2.9. [Cauchy-Davenport Theorem](Theorem 5.4 in [TV06]) Let p be a prime, and let

A, B ✓ Zm. Then

|A+ B| � min(|A|+ |B|� 1, p).

The Cauchy-Davenport Theorem is an immediate corrolary of the renowned Uncertainly

Principle in Fourier Analysis, see for example [Tao03].

The following is an easy corollary of the Cauchy-Davenport Theorem.

Corollary 4.2.10. Let p be a prime, and let k sets A1, A2, . . . , Ak ✓ Zp. If Âk
j=1 |Aj| � p+ k� 1,

then A1 + A2 + . . .+ Ak = Zp.

Proof. It suffices to prove that |A1 + A2 + . . .+ Ak| � min(Âk
j=1 |Aj|� k+ 1, p), from which

the claim follows. We perform induction on k. For k = 2 the result is conclusion of the

Cauchy-Davenport theorem. For k > 3, we have that if A1 + A2 + . . .+ Ak is not Zp, then

k

Â
k=1

|Aj| = |Ak|+
k�1

Â
j=1

|Aj| (4.11)

< |Ak|+ (|A1 + A2 + . . .+ Ak�1|+ k� 2) (4.12)

< (|A1 + A2 + . . . Ak|+ 1) + k� 2 = |A1 + A2 + . . .+ Ak|+ k� 1, (4.13)

where from (1) to (2) we used the inductive hypothesis, and from (2) to (3) the Cauchy-

Davenport Theorem. We note that the inequalities used follow since A1 + A2 + . . .+ Ak

(and hence also A1 + A2 + . . .+ Ak�1) are not equal to Zp.
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Algorithm 17
1: procedure ModularSubsetSumInPrimeUniverse(S, p) . S is an n-element set, p is

prime
2: X0,i  {0, xi}, for all i 2 [n]
3: n0  n
4: for r = 1 to log n do
5: nr  nr�1/2.
6: for i = 1 to nr�1/2 do
7: Xr,i  Xr�1,2i�1 + Xr�1,2i . Sumset Computation via Theorem 4.2.7
8: if Âji |Xr,j| > p+ i� 1 then
9: Return Zp
10: end if
11: end for
12: end for
13: Return Xlog n,1
14: end procedure

Theorem 4.2.11. [Kneser’s Theorem] (Theorem 5.5 in [TV06]) Let A, B ✓ Zm. Then

|A+ B| � min(|A|+ |B|� |Sym(A+ B)|,m)

4.2.7 Modular Subset Sum over Zp

In this section we give a warm-up, when m = p is a prime number. We remind that we

solve the stronger problem of finding all the attainable subset sums modulo m. We shall

assume that n is power of 2, since we can just 0 any number of times we want, without

affecting the attainable subset sums. Moreover, for ease of exposition our algorithm in this

section is not output-sensitive. The algorithm appears in 17.

Lemma 4.2.12 ( Bound on the Running Time and Proof of Correctness). The running time

of Algorithm 17 is O
⇣

(m+ n)mo(1)
⌘

= O
⇣

(p+ n)po(1)
⌘

. Moreover, the output is the set of all

attainable subset sums.

Proof. Let (r⇤, i⇤) be the values of r and i at the end of the execution of the algorithm. If

r⇤ = log n we have i⇤ = 1. We have that for r < r⇤

Â
inr�1/2

|Xr,i|  p+
nr�1

2
� 1,
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as well as

Â
i<i⇤

|Xr⇤,i|  p+
nr⇤�1

2
� 1,

by the fact that (i⇤, r⇤) is the end of the execution of the algorithm. Because of the calls

to Theorem 4.2.7 we have that the running time is bounded by (ignoring constant terms)

Â
r<r⇤

nr/2

Â
i=1

|Xr,i|mo(1)
+ Â

ii⇤
|Xr⇤,i|mo(1). (4.14)

The term Âii⇤ |Xr⇤,i| can be split to two terms: the first i � 1 summands, which can

be bounded by p+ nr⇤�1
2 as we have already seen, and the last term which can be trivially

bounded by p. We now bound the first term in (4). We have that

Â
r<r⇤

nr/2

Â
i=1

|Xr,i| 

Â
r<r⇤

⇣

p� 1+
nr�1

2

⌘



log n · p+ n.

Plugging this into (4) we obtain the desired bound on the running time.

To prove correctness, observe that if the algorithm reaches Line 13, then it computed

all attainable subset sums. Otherwise, if it returns in Line 9, then Âji |Xr,j| > p+ i� 1,

which by corollary 4.2.10 implies that Âji Xr,j = Zp, and hence S(S) = Zp. Tis means that

algorithm always produces the correct answer.

4.2.8 Modular subset sum over Zm, for any m

In this section we proce Theorem 4.2.1. As in the previous section, we shall asssume that

n is a power of 2, since we can add zeros to our set S. The algorithm for the Modular

Subset Sum problems appears in Algorithm 18. Similarly to the prime version, the algorithm

computes sumsets in a bottom-up fashion. If at some point |Xr,i| < |Xr�1,2i|+ |Xr�1,2i+1|� 1,

we know by Theorem 4.2.11 that Sym(Xr�1,2i + Xr�1,2i+1) is non-trivial. Since Sym(Xr�1,2i +

191



Algorithm 18
1: procedure ModularSubsetSum(S,m) . S is an n-element set
2: for B = 1, 2, . . . , 2dlogme+1 do
3: X0,i  {0, xi}, for all i 2 [n]
4: n0  n
5: for r = 1 to log n do
6: nr  dnr�1/2e.
7: for i = 0 to dnr�1/2e do
8: Xr,i  Xr�1,2i + Xr�1,2i+1 . Sumset Computation via Theorem 4.2.7
9: if |Xr,i| < |Xr�1,2i|+ |Xr�1,2i+1|� 1 then
10: Compute Sym(Xr,i) . Theorem 4.2.5
11: d  minimum non-zero element of Sym(Xr,i) . Sym(Xr,i) = d ·Zm/d
12: Return ModularSubsetSum(S, d) + d · {1, 2, . . . ,m/d� 1}
13: end if
14: if Âji |Xr,j| > B+ i� 1i mod 2=1 then
15: nr = i
16: break
17: end if
18: if nr�1 is odd then
19: Xr,nr = Xr�1,nr�1

20: end if
21: end for
22: end for
23: if |Xlog n,1| < B then
24: Return Xlog n,1
25: end if
26: end for
27: end procedure

Xr�1,2i+1) ✓ Sym(S(S)), we obtain that the Sym(S(S)) is non-trivial, hence we can restrict

ourselves solving the problem over Zd, where d is the minimum element in Sym(Xr�1,2i +

Xr�1,2i+1).

One issue is how to obtain indices r, i such that |Xr,i| < |Xr�1,2i|+ |Xr�1,2i+1|� 1 (if they

exist). For that, the condition in lines 14-16 ensures that if Âji |Xr,j| is large enough (above

some threshold), then this forces |Xr,i| < |Xr�1,2i|+ |Xr�1,2i+1|� 1, for some r, i. The value

B is used to guess the value of S(S), so that the thresholding is implemented.

We first prove that 18 always outputs the correct set of attainable subset sums.

Correctness of 18. We shall perform induction on the universe size m. For m = 1, which is
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the base case, the result is obvious. For larger m, we split to two cases.

Case 1: For some indices r, i (and B) |Xr,i| < |Xr�1,2i|+ |Xr�1,2i+1|� 1.

This means that Sym(Xr,i) is non-trivial and hence Sym(S(S)) is also non-trivial. Let

d be the smallest non-zero element of Sym(Xr,i). Then we have that d 2 Sym(S(S)), and

moreover:

1. For any x 2 S(S) and any non-negative integer j, we obtain x + j · d 2 S(S), by

observing that S(S) + j · d = S(S). By the minimality of d and since Sym(Xr,i) is a

group over Zm, we get that d is a divisor of m. Thus, we obtain that there exists some

non-negative integer j such that x+ jd 2 {0, . . . , d� 1} 2 S(S).

2. For any x 2 {0, . . . , d� 1} \ S(S), we have that x+ j · d 2 S(S), for any j.

The above two facts imply that S(S) = ModularSubsetSum(S, d) + d · {1, 2, . . . ,m/d� 1}.

Because of the induction hypothesis on the correctness of ModularSubsetSum, we obtain

the desired result.

Case 2: For fixed B there are no indices i, r such that |Xr,i| < |Xr�1,2i|+ |Xr�1,2i+1|� 1, and

the condition in line 14 never evaluates to true. Then the algorithm proceeds by finding the

set of all modular subset sums in a straightforward manner.

Case 3: For fixed B there are no indices i, r such that |Xr,i| < |Xr�1,2i|+ |Xr�1,2i+1|� 1, and

the condition in line 14 does evaluates to true at least once. Let (r⇤, i⇤) be the last such pair

found during the execution of the algorithm.

Since

Â
ji⇤

|Xr⇤,j| > B+ i⇤ � 1i⇤ mod 2=1,

i f r⇤ < log n we obtain
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Â
jdi⇤/2e

|Xr⇤+1,j| �

Â
jbi⇤/2c

�

|Xr⇤,2j|+ |Xr⇤,2j+1|� 1
�

+ 1i⇤ mod 2=1 · |Xr⇤,i⇤ | =

Â
ji⇤

|Xr⇤,j|� bi⇤/2c >

B+ i⇤ � 1i⇤ mod 2=1 � bi⇤/2c = B+ bi⇤/2c > B+ bi⇤/2c � 1bi⇤/2c mod 2=1.

The above implies that the condition will be evaluated true also for indices (r⇤ +

1, di⇤/2e), which contradicts the minimality of the pair (r⇤, i⇤), except if r⇤ = log n. This

means that |Xlog n,1| � B.

Combining the analyses from the above three cases we can argue the following way. First

of all, note that if condition in line 9 ever evaluates to true, then correctness is proved by

the inductive step. Let an invocation of the outer loop with B > |S(S)|. Then the algorithm

either finds a non-trivial symmetry group of S(S) (Case 1), either we are in Case 2 and

is going to compute all attainable subset sums in a straightforward bottom-up fashion;

we cannot be in Case 3 because this would mean that |Xlog n,1| � B > |S(S)| , which is a

contradiction since Xlog n,1 ✓ S(S). If B  |S(S)| and no non-trivial symmetry group is

found then two things can happen. The first is that we are in Case 2, and the algorithm

is going to increment B because of the condition in line 23 and the fact that in that case

Xlog n,1 = S(S). The second is that we are in Case 3, from which we infer that |Xlog n,1| � B,

and again due to liine 23 the algorithm will proceed by incrementing B.

We are now proceed with bounding the running time of the algorithm.

Proof. Let B⇤ be the smallest power of 2 that is at least |S(S)|. Let T(S,m) be the running

time of our algorithm. Then, by the analysis of the correctness of the algorithm a similar
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analysis as in the previous section one can bound the running time by

(

T(S, d) + |S(S)|
)

+ Â
BB⇤

(B+ n)mo(1),

where the first term accounts for the recursion in line 12 and building the subset sums in

the same line, while in the second term the variable B is over all powers of 2. Since d  m/2,

the recursion easily yields the desired result.

4.2.9 Output-sensitive Sumset Computation

In this section we give two algorithms for sumset computation, one deterministic and one

randomized, proving Theorems 4.2.7 and 4.2.8 respectively.

Deterministic algorithm

For a set S and a number m we define S mod m = {x mod m, x 2 S}. We will need the

following Lemma, which appears in [CL15]. For completeness, we also give a self-contained

proof.

Lemma 4.2.13. Let two sets A, B ✓ {0, . . .m� 1}, and let T be a set containing A+ B. There

exists an algorithm PromiseSumset(A, B, T,m) which in time O(|T|mo(1)
) computes A+ B over

Zm. More specifically, the running time is O(|T|2
p

log |T| log logm
).

For numbers p1, p2, . . . , p`, we will call (p1, p2, . . . , p`) a tuple of length `, or just a tuple.

Definition 4.2.14. For prime numbers p1, . . . , pi we define the function

hp1,...,pi(x) = x mod
i

’
j=1

pj.

Moreover, for a set T we define

hp1,...,pi(T) = {y : 9x 2 T, hp1,...,pi(x) = y}

Lastly, let h�1
p1,...,pi(y, T) be the values x 2 T such that hp1,...,pi(x) = y.
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Clearly, the function h satisfies the property (h(x) + h(y)) mod Pj
i=1pj = h(x+ y), for

any two natural numbers x, y.

Definition 4.2.15 (Perfect Family). Let H be a collection of tuples of primes. Then H is called

perfect for a set T if for every x 2 T there exists a tuple of prime numbers (p1, . . . , pi) 2 H such that

h�1
p1,...,pi(hp1,...,pi(x), T) = {x}.

In other words, every x 2 T is isolated from T \ {x} under hp1,...pi .

Lemma 4.2.16. (Construction of perfect family [CL15] ) For a set T ✓ Zm, a perfect family H for

T can be found in time

O(`2` · |T|1+1/` · poly(logm)).

The size of H is at most

` · 2` log |T|.

Moreover, the length of every tuple inH is `, and the largest prime in every tuple is O(|T|1/` log2 m).

Proof. If such a prime pi in Line 7 always exists, then the algorithm at the end of the inner

loop it detects at least |T|/2` numbers x 2 S for which are mapped to a bucket with strictly

less than |T|1�`/`
+ 1 = 2 elements in T. In other words, each one of these elements x satisfy

hp1,...,p`(T) = {x}), and hence will be removed from S in Line 10. Thus, if r is the number of

iterations till S is exhausted, we have that

|T|
⇣

1� 2�`
⌘r

< 1,

which happens for r =

&

log |T|
log( 2`

2`�1
)

'

.

We now proceed by proving that in Line 7 such a prime always exists. We fix S and

perform induction on i. For i = 0 we trivially have that h�1
p1,...,pi

�

hp1,...,pi(x), T
�

is a set of |T|

elements for every x 2 S, so condition in 7 trivially holds. Define

Ci(x) = h�1
p1,...,pi

�

hp1,...,pi(x), T
�

\ {x},
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to be elements of T that collide with x under the first i primes. For i � 1 we already have by

the inductive hypothesis that

|Ci�1(x)| < |T|1�(i�1)/`
+ 1

for at least |S| · 2�i+1 elements x 2 S. Call these elements good. We will now argue the

existence of pi with the desired properties via the probabilistic method. We pick pi as a

random prime from [C · |T|1/` · log2 m]. Observe that that for a good x and y 2 T \ {x} we

have that the probability Ppi [pi|(x� y)
]

is the number of prime divisors of x� y, divided

by the number of primes in [C|T|1/` log2 m]. A crude upper bound on the prime divisors

of x� y is logm, otherwise x� y > 2logm = m. The number of primes in [C|T|1/` log2 m]

is c log |T|1/` logm by the Prime Number Theorem, where c is an absolute constant larger

than 6, as long as C is chosen to be at least 7. Thus, the probability that pi|x� y is at most

c�1|T|�1/`. Thus, by the inductive hypothesis on the number of good elements of S we have

that

E
pi
[

Ci(x)] < |T|1�(i�1)/` · c�1|T|�1/`
= c�1|T|1�i/`,

as we need to take a union-bound only over the elements where x collides with under

p1, . . . , pi�1; these elements are at most |T|1�(i�1)/` by the induction hypothesis.

Invoking Markov’s inequality we get that

Pr
pi

h

|Ci(x)| > |T|1�i/`/2
i

< 2/c.

Thus, the expected number of good x such that |Ci(x)| < |T|1�i/`/2 is at least (number

of good elements)·(1� 2/c) � |S|2�i, and hence there exists a choice of pi such that the

condition of Line 7 holds.

Lastly, we bound the running time. The outer loop will be performed log |T|/ log(2`/(2`�

1)) = O(2` log |T|) times. The inner loop will be performed ` times. The computation in

Line 7 can be easily implemented in O(|T|1+1/` · poly(log u)) time. The total running time
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Algorithm 19
1: procedure PerfectFamilyConstruction(T,m, `)
2: S  T
3: H  ∆
4: while S 6= ∆ do
5: for i = 1 to ` do
6: Pick prime pi 2 [C · |T| · log2 m] such that
7:

|{x 2 S : |h�1
p1,...,pi

�

hp1,...,pi(x), T
�

| < |T|1�i/`
+ 1} � |S| · 2�i

. all x such that the bucket of x under hp1,...,pi is not “too heavy”
8: end for
9: H  H [ (p1, p2, . . . , p`)
10: Remove x 2 S such that hp1,...,pi(T) = {x} . x is isolated from T under p1, . . . pi
11: end while
12: Return H
13: end procedure

then follows.

The proof of Lemma 4.2.13 follows.

Proof. We first find a perfect family H for T by calling PerfectFamilyConstruction(T,m, `)

(Algorithm 19) with ` = Q(

p

log n/ log logm). Then, every tuple (p1, . . . , p`) 2 H is

mapped to an integer by the formula ’`
j=1 pj. Using Lemma 4.2.16 the total running time

for this step is

` · |H| = `22` · log |T|.

Next for every p0 = (p1, . . . , p`) 2 H we compute hp0(A) and hp0(B). By a Fast Fourier

Transform in a universe of size (|T|1/` log2 m)

` we compute hp0(A+ B) =
�

hp0(A) + hp0(B)
�

mod ’`
j=1 pj.

We then iterate over all x 2 T and check whether hp0(x) 2 hp0(A+ B). Every x 2 T which

yields a negative answer for at least one p0 2 H, is discarded. It is clear that every

x 2 A + B is not discarded. Since for every x 2 T there exists a tuple p0 2 H such

that h�1
p0 (h

0
p(x)) = {x}, every x 2 T \ (A + B) will be discarded when considering the

corresponding p0.

Summing up the time to construct the perfect family, the time to map tuples to integers,
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Algorithm 20
1: procedure Deterministic Sumset(A, B,m)
2: T0  {0, 1}
3: m0  2
4: for r = 1 to dlogme do
5: mr  2 ·mr�1
6: Qr  ∆
7: for x 2 Qr�1 do Qr  Tr [ {x, x+mr�1}
8: end for
9: Ar  ∆
10: for a 2 A do Ar  Ar [ {a mod mr}
11: end for
12: Br  ∆
13: for b 2 B do Br  Br [ {b mod mr}
14: end for
15: Tr  PromiseSumset(Ar, Br,Qr,mr)

16: end for
17: S  ∆
18: for x 2 T2dlogme do S  S [ {x mod m}
19: end for
20: Return S
21: end procedure

and the time to perform 2|H| Fast Fourier Transforms, the total running time then becomes

(ignoring logarithmic factors in T,m)

`2` · |T|1+1/`
+ `22` + |T| log2l m · `22`.

Plugging in the value ` = b

l

p

log |T|/ log logm
m

, for some constant b, yields the

desired result.

We proceed with the proof of Theorem 4.2.7.

Proof. The algorithm appears in 20. We prove inductively that Tr = (A+ B) mod mr in line

11. The base of the induction clearly holds for r = 0. For r � 1, we first observe that x = x0

over Zmr�1 implies that x� x0 = kmr�1 for some integer k, which in turns implies that x� x0

over Zmr is either 0 (if k is even) either odd (if k is odd). By the induction hypothesis, we have
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that (a+ b) mod mr�1 2 Tr�1, so (a+ b) mod mr 2 Qr and (a+ b+ mr�1) mod mr 2 Qr.

Thus |Qr|  2|Tr�1|  2|A + B|, and due the call to PromiseSumset we will get the

desired result in time O(|Tr�1|mo(1)
r ). At the last step in Line 18 we map all elements of

(A+ B) mod 2dlogme to (A+ B) mod m. Since |(A+ B) mod m| � 1
2 · |(A+ B) mod 2dlogme|,

we obtain the desired bound on the running time.

Randomized algorithm

We also give a self-contained proof of Theorem 4.2.8. Our algorithm will solve the more

general problem of computing the cyclic convolution of two m-dimensional sparse vectors

u, v 2 with positive coordinates in output-sensitive time. We will need the following simple

lemma, which has also been critically exploited in previous work.

Lemma 4.2.17. Let u, v be m-dimensional vectors with non-negative coordinates. Let w be m

dimensional vector such that ai � (u ⇤ v)i for all i 2 [m]. Then,
 

Â
i2[m]

ui

! 

Â
i2[m]

vi

!

= Â
i2[m]

wi,

if and only if w = u ⇤ v.

Proof. Let wi � (v ⇤ u)i = ei � 0. Observe that

Â
i2[m]

wi = Â
i2[m]

(

(u ⇤ v)i + ei) =

Â
i2[m]

Â
j2[m]

ujvi�j + Â
i2[m]

ei =

 

Â
i2[m]

ui

! 

Â
i2[m]

vi

!

+ Â
i2[m]

ei,

The latter equality implies that all ei should be zero, since they are all non-negative, and

vice versa.
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Equipped with the above Lemma, we proceed with the proof of Theorem 4.2.8. Since a

lot of ideas here are common with previous work, we will give a more high-level proof.

Proof. As in the deterministic case, we shall solve the following promise problem: we are

given a subset T of size 2|A+ B| which contains A+ B. Then, invoking Algorithm 20 we

can solve the more general problem.

We randomly pick numbers R = c logm(c � 3) prime numbers q1, q2, . . . qR 2 [C|T| log2 m]

for a sufficiently large constant C; to do that, we afford to run Eratosthene’s sieve in time

O(|T| log2 m · log logm), and then pick R of them at random. By the prime number theorem,

there are W(|T| logm) primes in [C|T| log2 m]. Moreover, for any distinct indices i, i0 2 T

there are at most logm+ 1 distinct prime divisors of i� i0, otherwise i� i0 would be at least

2logm+1 > m. This means that for the hash function hp(x) = x mod p we have that for any

x, y 2 T we have that the probability that hp(x) = hp(y) is
2 logm+1

W(|T| logm)

= O(

1
|T| ), and hence the

probability that hp(x) = hp(z) for some z 2 T \ {x} is les than a small constant, by a union-

bound. Due to the R different primes, the probability that for at least half of them x collides

with T \ {x} under the corresponding hash function, can be made 1/poly(m) by tuning

the paramteter c in the definition of R. Thus, if for every p among the R chosen, we define

vectors u(p), v(p) 2 Zp such that u(p)i = |{x 2 A : hp(x) = i}|, v(p)j = |{y 2 B : hp(y) = j},

and compute u(p) ⇤ v(p) 2 Zp, we have the following fact. For all x 2 T, for at least

R/2 of the R primes it holds that (u(p) ⇤ v(p))x = Âj2[m]

1A(j)1B(x � j). This holds since

(hp(x) + hp(y)) mod p = hp(x+ y), see also [CL15]. Thus, by a standard median argument,

we will find the values Âj2[m]

1hp(A)(j)1hp(B)(x� j) for all x 2 T, i.e. the number of ways that

x can be written as a sum of a number from A and a number from B. Since the values we

obtained can only be over-estimators, using Lemma 4.2.17 we can easily turn this algorithm

to a Las Vegas one by repeating and checking.
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4.2.10 Computing the symmetry group

In this section we prove Theorem 4.2.5. We look at the following two strings. The first one is

z with length 2n, having characters

z1 = a2 � a1,

z2 = a3 � a2,

. . . ,

zn�1 = an � an�1,

zn = a1 � an +m,

zn+1 = a2 � a1,

. . . ,

z2n = an � an�1,

and the second string is w of length n, having characters

w1 = a2 � a1,

w2 = a3 � a2,

. . . ,

wn�1 = an � an�1,

wn = a1 � an +m.

We perform pattern matching with w as the pattern and z as the text. This can be

acomplished in time O(|A|) by running the Knuth-Morris-Pratt algorithm. We claim the

following, which proves correctness of our algorithm, and finishes the proof of 4.2.5.

Lemma 4.2.18. If there exists a match between z and w at position i, then ai � a1 2 Sym(A).

Moreover, if x 2 Sym(A), then x = ai � a1 for some i and there exists a match between z and w at
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position i.

Proof. Assume that there exists a match at position i. Then we have that for all 1  j  |A|

aj+1 � aj = ai+j � ai+j�1 (4.15)

where the indices are taken modulo |A|. This means that ai � a1 2 Sym(A), since

ai = a1 + (ai � a1), (4.16)

ai+1 = (a2 � a1) + ai = a2 + (ai � a1), (4.17)

ai+2 = (a3 � a2) + ai+1 = a3 + (ai+1 � a2) = a3 + (ai � a1), (4.18)

. . . (4.19)

ai+j = ai+j�1 + aj+1 � aj = aj+1 + (ai+j�1 � aj) = aj+1 + (ai � a1), (4.20)

where all indices are taken modulo |A|, and in every line the first equality follows from

(6), and the last equality by the previous equation, except from the first two lines in which

it follows trivially. The above equalities imply that ai � a1 2 Sym(A). This proves the first

part of the lemma.

For the second part, observe, as we also discussed in subsection 4.2.4, that Sym(A) ✓

A� {a1}. Thus, if ai � a1 2 Sym(A), all equations (7)-(11) hold, and thus one can deduce

equation (1) by substracting every two consecutive equations (cyclically), which in turn

implies that there exists a match between w and z in position i.

4.3 Subset Sum in Almost Output Sensitive Time

4.3.1 Preliminaries

For a set S of n positive intgers and an integer t we denote by S(S, t) to be the set of all

attainable subset sums of S, which are also smaller than t. Formally, we have
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S(S, t) = {u  t : 9T ✓ S, Â
x2T

x = u}.

We will also denote by sS = Âx2S x, and max(S) = maxx2Sx,min(S) = minx2Sx. For a

set B ✓ S(S, t) we define the function IB which maps every x 2 B to the lexicographically

smallest T ✓ S such that sT = x.

We also let [n] = {1, 2, . . . n}. For a function f : N ! N we define eO( f ) = O( f logc f )

for some sufficiently large constant c. Moreover, for a hash function h from a universe U to

a universe V, we define h(T) = {v 2 V : 9t 2 T, h(t) = v}. We will say that a set T ✓ U is

perfectly hashed under h if |h(T)| = |T|. Any h�1
(v) = {u 2 U : h(u) = v} will be referred

to as a “bucket” of h.

4.3.2 Our Contribution

We remind the classical SubsetSum problem: given a set S of positive integers, and a target t,

find whether there exists a subset of S that sums up to t. The classical textbook algorithm of

Bellman via dynamic programming runs in time O(nt), while the algorithm of Bringmann

[Bri17] solves the problem in time eO(t + n). However, a closer look at both algorithms

reveals an interesting property: the algorithm of Bellman can be implemented to run in

time O(n|S(S, t)|), while the algorithm of [Bri17] runs in time eW(n+ t). This means that it

can still be the case that the folklore dynamic programming algorithm is much better than

[Bri17] in many cases of interest, in particular when |S(S, t)| = o(t/n). Thus, it might not

be clear which of the two algorithms is better, and the following natural question arises.

Question 4.3.1. Does there exist an algorithm which runs in time O(|S(S, t)| · poly(log(nt))|)?

Such an algorithm would be strictly better than the textbook solution, and would be at

least as good as Bringmann’s algorithm. Our work makes considerable progress towards

this question. Namely, we prove the following theorem.

Theorem 4.3.2. There exists a randomized algorithm which, given a set S and a target t, computes
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S(S, t) in time (ignoring logarithmic factors in t and n)

a

�2 |S (

S, t+ t/a)|) ,

with probability 99/100. Setting a = poly(log t) in specific, one obtains running time (ignoring

logarithmic factors in n and t)

�

�

�

�

S
✓

S, t+
t

poly(log(nt))

◆

�

�

�

�

.

Remark 4.3.3. In the above theorem it is possible to obtain (ignoring logarithmic factors in n and t)

a

�1 · |S(S, t+ t/a)|, but we do not elaborate on it.

4.3.3 Output-sensitive sumset computation in the non-modular case

This algorithm follows immediatelly by the modular version of sumset computation.

Lemma 4.3.4. Let A, B ✓ [u] be two sets of integers, both containing zero. The one can find A+ B

in expected time eO(|A+ B|) · log3 u.

Lemma 4.3.5 (Capped Version of Output-Sensitive Sumset Computation). Let A, B be two

sets containing integers less than u, both containing zero. Then, for any positive integer a, one can

find (A+ B) \ [u] in expected

eO
�

a

�2 |(A+ B) \
[

(1+ a)u
]|
�

· log3 u

time.

Proof. We partition [u] to a intervals of length bu/ac, except possibly the last one which has

length u� (a � 1)bu/ac. Let these intervals be J1, . . . , Ja, and denote Ai = A\ Ji, Bi = B\ Ji.

For every 0  i, j  a we check whether minx2Ai x+miny2Bjy  u, and if this is the case

we compute Ai + Bj using Lemma 4.3.4. The union of all Ai + Bj clearly is a superset of

(A+ B) \ [u], and thus we can project their union down to [u] to obtain (A+ B) \ [u]. Snce

every Ai + Bj ✓ (A+ B) \ [(1+ a)u] and |(A+ B) \ [u]| � max(|A|, |B|) by the fact that

both sets contain zero, we obtain the desired bound on the running time.
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Remark 4.3.6. Using machinery developed in the context of the sparse Fourier transform, one can

give a Monte Carlo algorithm with running time proportional to (ignoring polylogarithmic factors)

a

�1 |(A+ B) \
[

(1+ a)u
]| .

4.3.4 A simple algorithm for all-attainable Subset Sums (case t = sS)

The following theorem is the result of this section.

Theorem 4.3.7. Let S be a multiset of n positive integers. Then S(S, sS) can be found in expected

eO(|S(S, sS)|) · log3 sS

time.

Our algorithm is based on a simple divide and conquer-approach. We indicate that a

careful way to divide the multiset S to three parts reduces the sum of every part to half of

that of the initial set. On the conquer step we apply our output-sensitive algorithm. The

above two properties allow us to carefully bound the running time by eO(|S(S, st)|). For

the following two claims we let S = {s1, . . . , sn} be in sorted order, S1 be the odd-indexed

elements of S \ {sn}, and S2 be the even-indexed element of S \ {sn}.

Claim 4.3.8. If n is odd then

sS1  sS2 
sS
2
,

else

sS2  sS1 
sS
2
.

Proof. If n is odd then

Â
1i(n�1)/2

s2i�1  Â
1i(n�1)/2

s2i  Â
1i(n�1)/2

s2i+1,
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by the monotonicity of the si. The above inequality is translated to sS1  sS2  sS � sS2 ,

which gives the deisred result. A totally analogous argument holds for the case that n is

even.

Lemma 4.3.9 (Number of subset sums decrease by 1/2). It holds that

|S(S1, sS1)|,S(S2, sS2)| 
1
2
(|S(S, sS)|+ 1).

Proof. We prove the case that n is odd, since the case that n is even is completely analogous.

For any x 2 S(S1, sS1) \ {0} take I ✓ S1 such that sI = x. Then map I to I [ S2. We thus

have z = sI[S2 = x+ sS2 > sS1 by Claim 4.3.8, and hence z /2 S(S1, sS1). The aforementioned

mapping never maps two different x to the same number z, so we obtain the inequality

|S(S1, sS1)|� 1  |S(S, sS) \ S(S1, sS1)|,

from which we conclude, since S(S1, sS1) ✓ S(S, sS), that |S(S1, sS1)|  1
2 (|S(S, sS)|+

1).

Now, for S2 we do the following. As before, x 2 S(S2, sS2) \ {0} let I ✓ S2 such

that sI = x. Now map I to I [ S1 [ {sn}. We have that z = sI[S1[{sn} = sI + sS1[{sn} =

sI + (sS � sS2) � sI + sS2 , by Claim 4.3.8. Now, from the above it follows that z > sS2 , and

hence z /2 S(S2, sS2). This implies that

|S(S2, sS2)|� 1  |S(S, sS) \ S(S1, sS2)|,

from which the claim follows.

Proof. We split S to S1 [ S2 [ {sn}, as in Lemmas 4.3.8 and 4.3.9. We recursively com-

pute S(S1, sS1) and S(S2, sS2) and then, using two calls to the output-sensitive sumset

computation, we compute
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Algorithm 21

1: procedure SubsetSumforLargeElements(S, t, t0, d) . t  t0, 8x 2 S, x � t/ logc n
2: R  Q(log(t/d))

3: O  ∆
4: for r 2 [R] do
5: Pick 2-wise independent hash function hr : S  [2 log2c t0]
6: Sr  ∆
7: for j = 1 to 2 log2c t0 do
8: Zr,j = h�1

r (j) [ {0} . Elements that are hashed to bucket j under hr
9: Sr  

�

Sr + Zr,j
�

\ [t] . Capped Sumset Computation via Lemma 4.3.5
10: end for
11: O  O [ Sr
12: end for
13: Return O
14: end procedure

S(S1, sS1) + S(S2, sS2) + {sn}.

The expected running time of the conquer step is eO(|S(S, ss)|), since every element that

lies in the sumset of S(S1, sS1) + S(S2, sS2) + {sn} is contained in S(S, ss). The expected

running time T of the whole algorithm, denoting o = |S(S, sS)|, obeys the recursive relation

T(o)  2 · T
✓

1
2
(o+ 1)

◆

+

eO(o) · log3 ss.

The above yields T(o) = eO(o) · log3 ss, as desired.

4.3.5 Algorithm for general t

Handling Large Elements

The instance consisting solely of large items is much easier to solve, since only a polyloga-

rithmic number of elements can participate in a subset sum which is at most t. We use a

color-coding argument, similar to the one in [Bri17]. In what follows, t0 is an upper bound

on t. We will see why we need this slight variant of the problem in section 4.4.

Lemma 4.3.10 (Guarantee for large elements). Given positive integers t  t0 and a set S of
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non-negative integers elements, such that every x 2 S satisfies x � t/ logc t0, we can find S(S, t)

using Algorithm 21 in expected time

eO(a

�2|S(S, t(1+ a))|) · log3 t log(t0/d)

with probability 1� d.

Proof. We pick R = Q(log(t/d)) pairwise independent hash functions hr : S ! [2 log2c t0],

for r 2 [R]. For every r 2 R we denote Zr,j = h�1
r (j) [ {0} and compute the sumset

Sr =
⇣

Zr,1 + Zr,2 + . . . Zr,2 log2c t0

⌘

\ [t]

as in Algorithm 21. We first prove correctness. First of all, observe that Sr ✓ S(S, t) for

any r 2 [R], and hence [r2[R]Sr ✓ S(S, t). So it suffices to prove that S(S, t) ✓ [r2[R]Sr.

For a fixed x 2 S(S, t), the assumption on the integers in S yields that |I(x)|  logc t0.

We now observe that elements in IS(S,t)(x) will be perfectly hashed under hr with 1/2

probability. This yields that x 2 Sr, since the value x can be attained by picking every

element c 2 IS(S,t)(x) from one of the buckets it has been hashed to under hr, and 0

from every other (empty) bucket. A standard repetition argument gives that IS(S,t)(x) will

be perfectly hashed under at least one hr with probability 1� 1/(t/d) due to the choice

of R. Now, by a union-bound we have that for every x 2 S(S, t), the set IS(S,t)(x) is

perfectly hashed under some hr with probability 1� |S(S, t)|/(t/d) � 1� d. This means

that x 2 [r2[R]Sr, and hence [r2[R]Sr ✓ S(S, t). This finishes the proof of correctness.

For the running time, we invoke Algorithm from Lemma 4.3.5 giving total expected

running time (ignoring constants and any logarithmic factors)

Â
r2[R]

Â
2`log2 cn

a

�2|S([j`Zr,j, (1+ a)t)| 

a

�2
(R� 1)(log2c t0 � 1)|S(S, (1+ a)t)|,

from which the main result follows.
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Algorithm 22
1: procedure OutputSensitiveSubsetSum(S, t) . 8x 2 S, x  t
2: n  |S|
3: O  S \

[

0, t/n
]

4: for i = 1 to dlog ne do
5: Li  ∆
6: for ` = 1 to 5 log t do . Boosting success probability
7: Li  Li [OutputSensitiveSubsetSumPerLayer

�

S \
⇥ t
2i + 1, 2t2i

⇤

, t, t
�

8: end for
9: end for
10: for i = 1 to dlog ne do . Combine all layers
11: O  (O+ Li) \ [t] . Capped Sumset Computation via Lemma 4.3.5
12: end for
13: Return O
14: end procedure

Algorithm 23

1: procedure OutputSensitiveSubsetSumPerLayer(S, t, t0) . t  t0 and 8x 2 S, x  t
2: if min(S) � t

logc t0 then
3: Return SubsetSumforLargeElements

�

S, t, t0, (t0)�5�

4: end if
5: if sS < 2t then
6: x  maximum element of S . assume that S is sorted
7: (S1, S2)  (odd elements of S \ {x}, even elements of S \ {x}) . sS1 , sS2  t
8: O1  S(S1, sS1) . Theorem 4.3.7
9: O2  S(S2, sS2) . Theorem 4.3.7
10: Return

(

(O1 +O2) \ [u] + {x}
)

\ [u]
11: end if
12: Randomly partition S to (S1, S2) with |S1 � S2|  1. . Split S as evenly as possible.
13: e  1

log t0

14: O1  OutputSensitiveSubsetSumPerLayer
�

S1, (1+ e)

t
2 , t

0�

15: O2  OutputSensitiveSubsetSumPerLayer
�

S2, (1+ e)

t
2 , t

0�

16: Return (O1 +O2) \ [t] . Capped Sumset Computation via Lemma 4.3.5
17: end procedure

4.4 General Algorithm

Our approach randomly partitions the input to two equal-sized sets S1, S2. Our main

algorithm is Algorithm 22. Similar to [Bri17] the algorithm splits the set to layers, and solves

each layer separately, by calling Algorithm 23.
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Bounding the Running Time

The following lemma is the crux of our argument on bounding the running time. In a

nutshell, this lemma says that if all elements are small compared to the target, then any

way of splitting S to two parts X and Y forces the number of subset sums of X and Y to be

sufficiently less than the number of subset sums of S.

Lemma 4.4.1 (Recursive Splitting Condition). Let S be a set of numbers, partitioned into X and

Y. Let t be such that sS � 2t. Set µ =

max(S)
t and assume µ to be at most a sufficiently small

constant. Then for any e we have
�

�

�

�

S
✓

X, (1+ e)

t
2

◆

�

�

�

�

+

�

�

�

�

S
✓

Y, (1+ e)

t
2

◆

�

�

�

�

� 1  |S(Z, t)|
1� 4e � 8µ

Proof. We denote

C = S(S, t),

A = S
✓

X, (1+ e)

t
2

◆

,

B = S
✓

Y, (1+ e)

t
2

◆

.

We also let A0
= A \

⇥

(1� e � 2µ) t
2 , (1+ e)

t
2
⇤

. The statement is trivial if max(A) 

(1� e)

t
2 (or max(B)  (1� e)

t
2 ), since then mapping every x 2 B \ {0} to sIB(x)[X = x+ sX

(equivalently, map IB(x) to IB(x) [ X) we obtain |B|� 1 distinct subset sums above max(A),

yielding |C| � |A|+ |B|� 1. We will need the following two claims:

Claim 4.4.2. |C| � |A|+ |B|� |A0|� 1

Proof. Note that
�

�

�

�

C \


0, (1� e � 2µ)
t
2

�

�

�

�

�

�
�

�

�

�

A \


0, (1� e � 2µ)
t
2

�

�

�

�

�

= |A|� |A0|

Moreover, since all items are bounded by µt, we can choose P ✓ X such that

sP 2


(1� e � 2µ)
t
2
, (1� e)

t
2

�

.
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To see that, let any ordering of elements of X, initialize P to the empty set, and start adding

elements to it one by one; clearly at some point sP will fall inside the aforementioned interval.

Now, for every x 2 B, we map x to sIB(x)[P = sx + sP (equivalently, map IB(x) to IB(x) [ P,

to obtain |B|� 1 different sums, all in the interval
⇥

(1� e � 2µ) t
2 + 1, t

⇤

, and thus disjoint

from the numbers in A counted above. Thus, we obtain at least (|A|� |A0|) + (|B|� 1)

numbers in C.

Claim 4.4.3. |C| � |A|+ |A0|
2e+4µ�2

Proof. In the interval
⇥

0, (1+ e)

t
2
⇤

we simply count the numbers in A. Above that interval,

we argue as follows. Since all items are at most µt, using a totally analogous argument as in

the previous claim, we can find prefixes Pi ✓ Y such that

sPi 2 [

i(e + 2µ)t, i(e + 2µ)t+ µt)
]

,

for all i satisfying

i(e + 2µ)t+ µt  max(B).

Let us call such i good. Since max(B) � (1� e)

t
2 by an earlier argument, all i smaller

than

(1� e)

t
2

(e + 2µ)t
=

1� e

2e + 4µ

� 1
2e + 4µ

� 2.

are good.

For any x 2 A0 map IA0
(x) to IA0

(x) [ Pi, to obtain |A0| different numbers in the interval


i(e + 2µ)t+ (1� e � 2µ)
t
2
, (i+ 1)(e + 2µ)t+ (1� e � 2µ)

t
2

�

.

These intervals are pairwise disjoint as well as disjoint from the initial interval
⇥

0, (1+ e)

t
2
⇤

.

In order for all generated sums to be at most t, we also need (i+ 1)(e + 2µ)t+ (1� e �
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2µ) t
2  t, which boils down to i  (1+ e + 2µ)/(2e + 4µ)� 1. Since i is an integer, we have

at least 1/(2e + 4µ)� 1 valid i’s. Hence, we obtain

|C| � |A|+ |A0|
✓

1
2e + 4µ

� 1
◆

.

We now combine the two claims, by considering two cases:

• Case 1: |A0|  (2e + 4µ)|B| Then

|C| � |A|+ |B|� |A0|� 1 � |A|+ |B|(1� 2e � 2µ) � (|A|+ |B|)(1� 2e � 2µ)� 1.

• Case 2: |A0| � (2e + 4µ) · |B| Then

|C| � |A|+ |A0|
2e + 4µ� 2

�

|A|+ |B|(1� 4e � 8µ) �

(|A|+ |B|)(1� 4e � 8µ).

Lemma 4.4.4 (Bound on the Running Time). The procedure OutputSensitiveSubsetSum(S, t)

has expected running time (ignoring any logarithmic factor) at most

a

�2 |S (

S, (1+ a)t
)| .

Proof. It clearly suffices to prove that OutputSensitiveSubsetSumPerLayer(S, t, n) runs in

expected (|a�2S(S, (1+ a)t)|) · poly(log(nt)) time.

If every element of S is at least t/ logc t, we immediatelly get the desired result by

Lemma 4.3.10. Otherwise, the algorithm will split the set to two sets S1, S2 and recurse on

each one. If we are initally in layer i then every element is at least t/2i, the recursion tree

will have depth roughly Q(i� log log t), and number of nodes Q(2i/ logc t). In the leaves

of the recursion OutputSensitiveSubsetSumForLargeElements will be called. If the set
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S satisfies s < 2t, then the result will follow by theorem 4.3.7. Otherwise, by invoking

Lemma 4.4.1 (in every call µ = max(S)/t is smaller than some absolute constant) and since

e = 1/ log n, by an inductive argument we can bound the total running time per level by

|S(S, t)| · poly(log n). The claim then follows.

Proof of Correctness

We now prove that OutputSensitiveSubsetSum(S, t) returns S(S, t) with probability 99/100.

Combining this result with Lemma 4.4.4, we obtain Theorem 4.3.2. Similarly to [Bri17], we

perform a coloring coding argument to argue correctness.

Fix x 2 S(S, t). In the following we will write I(x) meaning IS(x). We will argue that the

algorithm will include it in the final output with probability 1� 99/(100t); then the result

will follow by a union bound. Moreover, it suffices to prove that for all i = 1, 2, . . . , dlog ne,

with probability 1� (log n+ 1) · 99/(100t) the element

sI(x)\[t2�1
+1,t2�i

]

will belong to the output of

OutputSensitiveSubsetSumPerLayer(x, S \ [t2�i+1
+ 1, t2�i

], t),

as well as a similar fact for sI(x)\[0,t/n]. If this is the case, by a union-bound we will get that

x = sI(x) = sI(x)\[0,t/n] +
dlog ne

Â
i=1

sS\[t2�i+1
+1,t2�i

]

belongs to the final list of elements. For that, since the failure probability of the leaves of

the recursion tree of the call SubsetsumPerLayerPerLayer calls in OutputSensitiveSubset-

Sum succeed with probability 1� t�5, the only thing we need to prove is the following. For

every set T wit containing elements less than t/ logc t0, and satisfying sT  t the following

holds. If we split it randomly to T1, T2 (line 12) then with probability 1� 1/ poly(t0) we

have that sT1  (1+ e)

t
2 and sT2  (1+ e)

t
2 . To do that we will invoke the following version
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of the Chernoff-Hoeffding bound: given random variables Z1, . . . ,ZN identically distributed

in [0,M] with E Zi = µ for all i, for z  1/2 we have that

Pr

"

�

�

�

�

�

N

Â
i=1

Zi � Nµ

�

�

�

�

�

> z

#

 e�CNµz

2/M,

where C is an absolute constant. In our case, if sT  t
2 there is nothing to prove,

otherwise by Chernoff-Hoeffding with M = t/ logc t0 and z = 1/ log t0 we obtain that

sT1 2 [(1� z)sT, (1+ z)sT] with probability 1� 1/ poly(t0), if c � 3. This failure probability

allows for a union-bound over every splitting in OutputSensitiveSubsetSumPerLayer.
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Chapter 5

Conclusion and Open Problems

In this thesis we presented several efficient solutions to fundamental problems in sparse/recovery

compressed sensing, all of them being nearly optimal, as well as (nearly or almost) opti-

mal algorithms for classical problems such as polynomial multiplication, Subset Sum and

Modular Subset Sum. Many new facinating questions remain open or arise from our work.

5.1 Non-Linear Compressed Sensing

OPEN: Devise an algorithm for compressed sensing from intensity-only measurements

which uses O(k log(n/k)) measurements and runs in time O(k logc n).

OPEN: Devise an algorithm for d � `2/`2 One-Bit Compressed Sensing which runs in time

eO(k logc n) and uses O(k log n+ d

�2k) measurements.

5.2 Sparse Fourier Transform

OPEN: Does there exist a sublinear-time dimension-free Sparse Fourier Transform algo-

rithm, achieving nearly optimal sample complexity?

OPEN: Devise an `•/`2 Sparse Fourier Transform algorithm with O(k log n) samples in

any dimension.

216



OPEN: Does there exist a strongly explicit construction of an `•/`1 scheme withO(k2 log n)

measurements?

OPEN: Does there exist a for-all `•/`1 scheme for the Sparse Fourier Transform which

uses O(k2 log n) samples and runs in sublinear time?

OPEN (Possibly very hard, if not impossible): Does there exist a for-all `2/`1 scheme for

the Sparse Fourier Transform running time o(k2) · logc n ?

OPEN: Does there exist a polynomial time algorithm for finding a subset of O(k2(logk n)
2
)

rows of the DFT matrix, such that the resulting matrix is 1/k-incoherent?

OPEN: Does there exist a strongly explicit construction of an 1/k-incoherent matrix with

O(k2 log n) rows? The same when the rows of the matrix should be a subset of the rows of

the DFT matrix.

OPEN (Possibly very hard): Does there exist a 1/k-incoherent with O(k2 logk n) rows?

5.3 Polynomial Multiplication and Sumset Computation

OPEN: Devise a O(k log n)-time algorithm1 for sparse polynomial multiplication, where k

is the size of the input plus the size of the output? Such an algorithm would outperform

FFT for any k = o(n).

OPEN: Does there exist a deterministic algorithm for finding the sumset of two sets in

output-sensitive time?

1log log n factors are prohibited!
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5.4 Subset Sum

OPEN: Can you find a deterministic algorithm for Modular Subset Sum in nearly linear

time without using a deterministic algorithm for output-sensitive sumset computation?

Even for the case where m is a prime number such a result would be very interesting.

OPEN: Devise an output-sensitive algorithm for Subset Sum, running time O(|S(S, t)| ·

poly(log t))?

OPEN: Does there exist a deterministic algorithm for Subset Sum faster thanO
�

min{
p
nt, t5/4}

�

which is achieved by [KX17]? Note that our techniques imply a deterministic algorithm

running in time

min{
p
n|S(S, 2t)|1+o(1), |S(S, 2t)|5/4(1+o(1))}.

OPEN: Without a dependence on t, which is the best algorithm for Subset Sum in terms

of |S|?
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