Hum Genet (2012) 131:1173–1185 DOI 10.1007/s00439-012-1139-5 ORIGINAL INVESTIGATION Y chromosome haplogroups and prostate cancer in populations of European and Ashkenazi Jewish ancestry Zhaoming Wang · Hemang Parikh · Jinping Jia · Timothy Myers · Meredith Yeager · Kevin B. Jacobs · Amy Hutchinson · Laurie Burdett · Arpita Ghosh · Michael J. Thun · Susan M. Gapstur · W. Ryan Diver · Jarmo Virtamo · Demetrius Albanes · Geraldine Cancel-Tassin · Antoine Valeri · Olivier Cussenot · Kenneth OYt · Ed Giovannucci · Jing Ma · Meir J. Stampfer · J. Michael Gaziano · David J. Hunter · Ana Dutra-Clarke · Tomas KirchhoV · Michael Alavanja · Laura B. Freeman · Stella Koutros · Robert Hoover · Sonja I. Berndt · Richard B. Hayes · Ilir Agalliu · Robert D. Burk · Sholom Wacholder · Gilles Thomas · Laufey Amundadottir Received: 22 November 2011 / Accepted: 4 January 2012 / Published online: 24 January 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Genetic variation on the Y chromosome has not been convincingly implicated in prostate cancer risk. To comprehensively analyze the role of inherited Y chromosome variation in prostate cancer risk in individuals of European ancestry, we genotyped 34 binary Y chromosome markers in 3,995 prostate cancer cases and 3,815 control subjects drawn from four studies. In this set, we identiWed nominally signiWcant association between a rare haplogroup, Z. Wang and H. Parikh are co-Wrst authors. Electronic supplementary material The online version of this article (doi:10.1007/s00439-012-1139-5) contains supplementary material, which is available to authorized users. Z. Wang · H. Parikh · J. Jia · T. Myers · M. Yeager · K. B. Jacobs · A. Hutchinson · L. Burdett · A. Ghosh · D. Albanes · M. Alavanja · L. B. Freeman · S. Koutros · R. Hoover · S. I. Berndt · S. Wacholder · L. Amundadottir Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA Z. Wang · T. Myers · M. Yeager · K. B. Jacobs · A. Hutchinson · L. Burdett Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA H. Parikh · J. Jia · T. Myers · L. Amundadottir Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20877, USA M. J. Thun · S. M. Gapstur · W. Ryan Diver Epidemiology Research Program, American Cancer Society, Atlanta, GA 30303, USA J. Virtamo Department of Chronic Disease Prevention, National Institute for Health and Welfare, 00300 Helsinki, Finland E1b1b1c, and prostate cancer in stage I (P = 0.012, OR = 0.51; 95% conWdence interval 0.30–0.87). Population substructure of E1b1b1c carriers suggested Ashkenazi Jewish ancestry, prompting a replication phase in individuals of both European and Ashkenazi Jewish ancestry. The association was not signiWcant for prostate cancer overall in studies of either Ashkenazi Jewish (1,686 cases and 1,597 control subjects) or European (686 cases and 734 control subjects) ancestry (Pmeta = 0.078), but a meta-analysis of stage I and II studies revealed a nominally signiWcant association with prostate cancer risk (Pmeta = 0.010, OR = 0.77; 95% conWdence interval 0.62–0.94). Comparing haplogroup frequencies between studies, we noted strong similarities between those conducted in the US and France, in which the majority G. Cancel-Tassin · A. Valeri · O. Cussenot Centre de Recherche pour les Pathologies Prostatiques (CeRePP), Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France K. OYt · A. Dutra-Clarke · T. KirchhoV Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, Box 192, 1275 York Avenue, New York, NY 10065, USA E. Giovannucci · J. Ma · M. J. Stampfer · J. Michael Gaziano Channing Laboratory, Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA D. J. Hunter Program in Molecular and Genetic Epidemiology, Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA T. KirchhoV · R. B. Hayes Division of Epidemiology, Department of Environmental Medicine, New York University School of Medicine, New York, NY 10016, USA 123 1174 Hum Genet (2012) 131:1173–1185 of men carried R1 haplogroups, resembling Northwestern European populations. On the other hand, Finns had a remarkably diVerent haplogroup distribution with a preponderance of N1c and I1 haplogroups. In summary, our results suggest that inherited Y chromosome variation plays a limited role in prostate cancer etiology in European populations but warrant follow-up in additional large and well characterized studies of multiple ethnic backgrounds. Introduction Family and twin studies have shown that prostate cancer has a clear heritable component which may be among the highest of all cancer types (Amundadottir et al. 2004; Lichtenstein et al. 2000), Over the last few years, genome wide association studies (GWAS) have successfully identiWed germline variants conferring risks of prostate cancer at over 45 loci (Amundadottir et al. 2006; Chung and Chanock 2011; Eeles et al. 2008, 2009; Gudmundsson et al. 2007a, b, 2008, 2009; Haiman et al. 2007; Kote-Jarai et al. 2011; Schumacher et al. 2011; Takata et al. 2010; Thomas et al. 2008; Yeager et al. 2007, 2009). These studies have not implicated variants on the Y chromosome in the risk of prostate cancer, possibly due to the fact that very few Y chromosome SNPs have been included on most genotyping chips used to date. Several groups have speciWcally investigated the role of Y chromosome haplogroups in prostate cancer risk. Many of these studies are inconclusive due to the small number of samples and/or markers used. One of I. Agalliu · R. D. Burk Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NewYork, NY 10461, USA R. D. Burk Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NewYork, NY 10461, USA R. D. Burk Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NewYork, NY 10461, USA R. D. Burk Department of Obstetrics, Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NewYork, NY 10461, USA G. Thomas Synergie-Lyon-Cancer, Universite Lyon 1, Centre Leon Berard, 69373 Lyon Cedex 08, France L. Amundadottir (&) Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Gaithersburg, MD 20877, USA e-mail: amundadottirl@mail.nih.gov the larger studies was conducted within the multi-ethnic cohort (MEC) using samples from prostate cancer cases and control subjects drawn from four ethnic groups. Of the 41 haplogroups observed, one was signiWcantly associated with prostate cancer in Japanese men (Paracchini et al. 2003) but this association was not replicated in a separate study from Korea (Kim et al. 2007). No association was seen between Y haplogroups and prostate cancer in a large Swedish study (Lindstrom et al. 2008). The Y chromosome contains the largest non-recombining region in the human genome, spanning almost the entire length of the chromosome. This region is called the nonrecombining Y (NRY) or the male-speciWc Y (MSY) (Rozen et al. 2003). In the absence of recombination, the NRY passes mostly unchanged from father to son and observed mutations reXect the evolutionary history of the Y chromosome. Binary markers can be used to classify Y chromosomes into haplogroups organized by a phylogenetic tree. A Wrst generation phylogeny of the tree was published in 2002 by the Y Chromosome Consortium (2002) and further revised in 2008 (Karafet et al. 2008). The Y chromosome tree now consists of over 300 haplogroups organized into 20 major groups or clades (Karafet et al. 2008). Multiple lines of evidence support a possible role for genes on the Y chromosome in prostate cancer etiology. Loss of the Y chromosome is one of the most frequent cytogenetic change seen in prostate tumors and may be an early event in tumorigenesis (Brothman et al. 1999; Jordan et al. 2001). In support of the previous assertion, chromosome transfer studies indicate that the human Y chromosome suppresses tumorigenicity of human prostate cell lines in vivo implying that it may harbor gene(s) with tumor suppressor function (Vijayakumar et al. 2005). Based on the essential role of the Y chromosome in secondary sexual diVerentiation and its potential role in disease pathogenesis, particularly related to the secondary sex organs, we explored this genomic region to investigate whether germline variation on this chromosome plays a role in prostate cancer risk. Results We analyzed 7,810 men from the Cancer Genetic Markers of Susceptibility (CGEMS) scan in stage I of this study. Of the 34 chromosome Y markers genotyped, 26 were observed in our sample (8 markers were monomorphic). With such a sample size, we were able to accurately characterize and estimate the Y chromosome frequency distribution in populations of European ancestry for 28 haplogroups including three combined groups (R1b1b + R1b*, R1a + R1* and I2b + I2c) as the leaf nodes of the NRY tree (Fig. 1a). Stage I had 41, 76 and 95% power to detect an association with an odds ratio of 1.3 and a MAF 123 Hum Genet (2012) 131:1173–1185 1175 A M269 M343 M335 M173 M207 M74 M479 M242 M526 M175 M9 M214 M231 M128+P43 M46 M70 M522 M20 M304 M429 M89 M170 M172 M267 M26 L416/L596 M307 M18 M513 Haplogroup CPS-II ATBC R1b1a2 R1b1b+R1b* R1b1c1 R1a+R1* R2 Q O N*+N1a+N1b N1c T1 L J2 J1 I2a1a I2b+I2c I1/O1a1 G2c G2a G1 C M123 M215 P177 M42 M203 M96 M81 M78 M180 M132 M174 M60 P97 CeRePP PLCO 0.345 0.297 0 0.024 0.002 0.004 0 0 0.004 0.010 0.002 0.059 0.002 0.010 0.049 0.081 0 0.041 0 0 0.010 0.008 0.042 0 0 0 0 0 0.488 0.025 0 0.127 0.002 0.003 0.001 0 0.017 0 0 0.038 0.010 0 0.065 0.139 0.001 0.032 0.001 0.001 0.007 0.005 0.024 0 0 0 0 0.001 0.462 0.083 0 0.090 0 0.005 0 0.001 0.008 0.003 0 0.038 0.029 0.004 0.061 0.112 0.003 0.030 0.001 0.003 0.020 0 0.028 0.001 0.001 0 0 0 0.048 0 0 0.060 0 0.001 0.032 0.005 0.556 0 0 0.001 0 0.001 0.012 0.276 0 0.005 0.001 0 0 0 0.002 0 0 0 0 0 P143 M201 M377 P15 M285 M130 M168 E1b1b1c E1b1b1b1 E1b1b1a1 E1b1a1a1 E1a D B A B CPS-II A TBC E1b1b1a1 G2a I J2 CeRePP N1c R1 Others PLCO Fig. 1 Chromosome Y haplogroup tree and frequency distribution in control subjects of European ancestry in Stage I. a Chromosome Y tree showing genotyped markers in black and those not genotyped in light grey. Haplogroup names are according to the International Society of Genetic Genealogy (ISOGG) 2011 update. The arrow points to the mutational event which gave rise to the E1b1b1c haplogroup. Stage I studies are the following: CPS-II American Cancer Society Cancer Prevention Study II, ATBC Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, CeRePP Centre de Recherche pour les Pathologies Prostatiques, and PLCO Prostate, Lung Colorectal and Ovarian Cancer Screening Trial. b The circle plots show frequencies for haplogroups with a derived frequency of 5% or higher in diVerent colors for each Stage I cohort (remaining haplogroups are combined in one group shown in black) 123 1176 Hum Genet (2012) 131:1173–1185 of 0.02, 0.05 and 0.10, respectively (assuming prostate cancer prevalence of 1.5067% and alpha of 0.05) (http:// seer.cancer.gov/csr/1975_2007/). Stage I association analysis After genotyping quality control based on completion rates and concordance analysis, a total of 3,995 prostate cancer cases and 3,815 control subjects from four studies were used in the analysis (1994; Calle et al. 2002; Gohagan et al. 2000; Valeri et al. 2003). This included 1,531 men diagnosed with non-aggressive prostate cancer (Gleason score <7 and disease stage 3.0.CO;2-E Calle EE, Rodriguez C, Jacobs EJ, Almon ML, Chao A, McCullough ML, Feigelson HS, Thun MJ (2002) The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. Cancer 94:2490–2501. doi:10.1002/cncr.101970 Chen YC, Giovannucci E, Lazarus R, Kraft P, Ketkar S, Hunter DJ (2005) Sequence variants of toll-like receptor 4 and susceptibility 123 1184 association study identiWes a second prostate cancer susceptibility variant at 8q24. Nat Genet 39:631–637. doi:ng1999[pii]10.1038/ ng1999 Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, Manolescu A, Rafnar T, Gudbjartsson D, Agnarsson BA, Baker A, Sigurdsson A, Benediktsdottir KR, Jakobsdottir M, Blondal T, Stacey SN, Helgason A, Gunnarsdottir S, Olafsdottir A, Kristinsson KT, Birgisdottir B, Ghosh S, Thorlacius S, Magnusdottir D, Stefansdottir G, Kristjansson K, Bagger Y, Wilensky RL, Reilly MP, Morris AD, Kimber CH, Adeyemo A, Chen Y, Zhou J, So WY, Tong PC, Ng MC, Hansen T, Andersen G, Borch-Johnsen K, Jorgensen T, Tres A, Fuertes F, Ruiz-Echarri M, Asin L, Saez B, van Boven E, Klaver S, Swinkels DW, Aben KK, Graif T, Cashy J, Suarez BK, van Vierssen Trip O, Frigge ML, Ober C, Hofker MH, Wijmenga C, Christiansen C, Rader DJ, Palmer CN, Rotimi C, Chan JC, Pedersen O, Sigurdsson G, Benediktsson R, Jonsson E, Einarsson GV, Mayordomo JI, Catalona WJ, Kiemeney LA, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K (2007b) Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 39: 977–983. doi:10.1038/ ng2062 Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D, Agnarsson BA, Sigurdsson A, Benediktsdottir KR, Blondal T, Jakobsdottir M, Stacey SN, Kostic J, Kristinsson KT, Birgisdottir B, Ghosh S, Magnusdottir DN, Thorlacius S, Thorleifsson G, Zheng SL, Sun J, Chang BL, Elmore JB, Breyer JP, McReynolds KM, Bradley KM, Yaspan BL, Wiklund F, Stattin P, Lindstrom S, Adami HO, McDonnell SK, Schaid DJ, Cunningham JM, Wang L, Cerhan JR, St Sauver JL, Isaacs SD, Wiley KE, Partin AW, Walsh PC, Polo S, Ruiz-Echarri M, Navarrete S, Fuertes F, Saez B, Godino J, Weijerman PC, Swinkels DW, Aben KK, Witjes JA, Suarez BK, Helfand BT, Frigge ML, Kristjansson K, Ober C, Jonsson E, Einarsson GV, Xu J, Gronberg H, Smith JR, Thibodeau SN, Isaacs WB, Catalona WJ, Mayordomo JI, Kiemeney LA, Barkardottir RB, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40:281–283. doi:10.1038/ng.89 Gudmundsson J, Sulem P, Gudbjartsson DF, Blondal T, Gylfason A, Agnarsson BA, Benediktsdottir KR, Magnusdottir DN, Orlygsdottir G, Jakobsdottir M, Stacey SN, Sigurdsson A, Wahlfors T, Tammela T, Breyer JP, McReynolds KM, Bradley KM, Saez B, Godino J, Navarrete S, Fuertes F, Murillo L, Polo E, Aben KK, van Oort IM, Suarez BK, Helfand BT, Kan D, Zanon C, Frigge ML, Kristjansson K, Gulcher JR, Einarsson GV, Jonsson E, Catalona WJ, Mayordomo JI, Kiemeney LA, Smith JR, Schleutker J, Barkardottir RB, Kong A, Thorsteinsdottir U, Rafnar T, Stefansson K (2009) Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet 41:1122–1126. doi:10.1038/ng.448 Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A, Neubauer J, Tandon A, Schirmer C, McDonald GJ, Greenway SC, Stram DO, Le Marchand L, Kolonel LN, Frasco M, Wong D, Pooler LC, Ardlie K, Oakley-Girvan I, Whittemore AS, Cooney KA, John EM, Ingles SA, Altshuler D, Henderson BE, Reich D (2007) Multiple regions within 8q24 independently aVect risk for prostate cancer. Nat Genet 39:638–644. doi:10.1038/ng2015 Hammer MF, Behar DM, Karafet TM, Mendez FL, Hallmark B, Erez T, Zhivotovsky LA, Rosset S, Skorecki K (2009) Extended Y chromosome haplotypes resolve multiple and unique lineages of the Jewish priesthood. Hum Genet 126:707–717. doi:10.1007/ s00439-009-0727-5 Jordan JJ, Hanlon AL, Al-Saleem TI, Greenberg RE, Tricoli JV (2001) Loss of the short arm of the Y chromosome in human prostate car- Hum Genet (2012) 131:1173–1185 cinoma. Cancer Genet Cytogenet 124:122–126. pii:S01654608(00)00340-X Karafet TM, Mendez FL, Meilerman MB, Underhill PA, Zegura SL, Hammer MF (2008) New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res 18:830–838. doi:10.1101/gr.7172008 Kim W, Yoo TK, Kim SJ, Shin DJ, Tyler-Smith C, Jin HJ, Kwak KD, Kim ET, Bae YS (2007) Lack of association between Y-chromosomal haplogroups and prostate cancer in the Korean population. PLoS One 2:e172. doi:10.1371/journal.pone.0000172 Kote-Jarai Z, Olama AA, Giles GG, Severi G, Schleutker J, Weischer M, Campa D, Riboli E, Key T, Gronberg H, Hunter DJ, Kraft P, Thun MJ, Ingles S, Chanock S, Albanes D, Hayes RB, Neal DE, Hamdy FC, Donovan JL, Pharoah P, Schumacher F, Henderson BE, Stanford JL, Ostrander EA, Sorensen KD, Dork T, Andriole G, Dickinson JL, Cybulski C, Lubinski J, Spurdle A, Clements JA, Chambers S, Aitken J, Gardiner RA, Thibodeau SN, Schaid D, John EM, Maier C, Vogel W, Cooney KA, Park JY, CannonAlbright L, Brenner H, Habuchi T, Zhang HW, Lu YJ, Kaneva R, Muir K, Benlloch S, Leongamornlert DA, Saunders EJ, Tymrakiewicz M, Mahmud N, Guy M, O’Brien LT, Wilkinson RA, Hall AL, Sawyer EJ, Dadaev T, Morrison J, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As N, Woodhouse CJ, Thompson A, Christmas T, Ogden C, Cooper CS, Lophatonanon A, Southey MC, Hopper JL, English DR, Wahlfors T, Tammela TL, Klarskov P, Nordestgaard BG, Roder MA, Tybjaerg-Hansen A, Bojesen SE, Travis R, Canzian F, Kaaks R, Wiklund F, Aly M, Lindstrom S, Diver WR, Gapstur S, Stern MC, Corral R, Virtamo J, Cox A, Haiman CA, Le Marchand L, Fitzgerald L, Kolb S et al (2011) Seven prostate cancer susceptibility loci identiWed by a multi-stage genome-wide association study. Nat Genet 43:785–791. doi:10.1038/ng.882 Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85. doi:10.1056/NEJM200007133430201 Lindstrom S, Adami HO, Adolfsson J, Wiklund F (2008) Y chromosome haplotypes and prostate cancer in Sweden. Clin Cancer Res 14:6712–6716. doi:10.1158/1078-0432.CCR-08-0658 Ma J, Li H, Giovannucci E, Mucci L, Qiu W, Nguyen PL, Gaziano JM, Pollak M, Stampfer MJ (2008) Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-speciWc mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol 9:1039–1047. doi:10.1016/S1470-2045(08)70235-3 Paracchini S, Pearce CL, Kolonel LN, Altshuler D, Henderson BE, Tyler-Smith C (2003) A Y chromosomal inXuence on prostate cancer risk: the multi-ethnic cohort study. J Med Genet 40:815– 819 Rootsi S, Zhivotovsky LA, Baldovic M, Kayser M, Kutuev IA, Khusainova R, Bermisheva MA, Gubina M, Fedorova SA, Ilumae AM, Khusnutdinova EK, Voevoda MI, Osipova LP, Stoneking M, Lin AA, Ferak V, Parik J, Kivisild T, Underhill PA, Villems R (2007) A counter-clockwise northern route of the Y-chromosome haplogroup N from Southeast Asia towards Europe. Eur J Hum Genet 15:204–211. doi:10.1038/sj.ejhg.5201748 Rozen S, Skaletsky H, Marszalek JD, Minx PJ, Cordum HS, Waterston RH, Wilson RK, Page DC (2003) Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423:873–876. doi:10.1038/nature01723 Schumacher FR, Berndt SI, Siddiq A, Jacobs KB, Wang Z, Lindstrom S, Stevens VL, Chen C, Mondul AM, Travis RC, Stram DO, Eeles RA, Easton DF, Giles G, Hopper JL, Neal DE, Hamdy FC, Donovan JL, Muir K, Al Olama AA, Kote-Jarai Z, Guy M, Severi G, Gronberg H, Isaacs WB, Karlsson R, Wiklund F, Xu J, Allen NE, Andriole GL, Barricarte A, Boeing H, Bas Bueno-de-Mesquita H, 123 Hum Genet (2012) 131:1173–1185 Crawford ED, Diver WR, Gonzalez CA, Gaziano JM, Giovannucci EL, Johansson M, Le Marchand L, Ma J, Sieri S, Stattin P, Stampfer MJ, Tjonneland A, Vineis P, Virtamo J, Vogel U, Weinstein SJ, Yeager M, Thun MJ, Kolonel LN, Henderson BE, Albanes D, Hayes RB, Spencer Feigelson H, Riboli E, Hunter DJ, Chanock SJ, Haiman CA, Kraft P (2011) Genome-wide association study identiWes new prostate cancer susceptibility loci. Hum Mol Genet 20:3867–3875. doi:10.1093/hmg/ddr295 Semino O, Magri C, Benuzzi G, Lin AA, Al-Zahery N, Battaglia V, Maccioni L, Triantaphyllidis C, Shen P, Oefner PJ, Zhivotovsky LA, King R, Torroni A, Cavalli-Sforza LL, Underhill PA, Santachiara-Benerecetti AS (2004) Origin, diVusion, and diVerentiation of Y-chromosome haplogroups E and J: inferences on the neolithization of Europe and later migratory events in the Mediterranean area. Am J Hum Genet 74:1023–1034. doi:10.1086/ 386295 Takata R, Akamatsu S, Kubo M, Takahashi A, Hosono N, Kawaguchi T, Tsunoda T, Inazawa J, Kamatani N, Ogawa O, Fujioka T, Nakamura Y, Nakagawa H (2010) Genome-wide association study identiWes Wve new susceptibility loci for prostate cancer in the Japanese population. Nat Genet 42:751–754. doi:10.1038/ng.635 The ATBC Cancer Prevention Study Group (1994) The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group. Ann Epidemiol 4:1–10 Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N, Yu K, Chatterjee N, Welch R, Hutchinson A, Crenshaw A, Cancel-Tassin G, Staats BJ, Wang Z, Gonzalez-Bosquet J, Fang J, Deng X, Berndt SI, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cussenot O, Valeri A, Andriole GL, Crawford ED, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover R, Hayes RB, Hunter DJ, Chanock SJ (2008) Multiple loci identiWed in a genome-wide association study of prostate cancer. Nat Genet 40:310–315. doi:10.1038/ng.91 Underhill PA, Passarino G, Lin AA, Shen P, Mirazon Lahr M, Foley RA, Oefner PJ, Cavalli-Sforza LL (2001) The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Ann Hum Genet 65:43–62. pii:S000348 0001008582 Valeri A, Briollais L, Azzouzi R, Fournier G, Mangin P, Berthon P, Cussenot O, Demenais F (2003) Segregation analysis of prostate 1185 cancer in France: evidence for autosomal dominant inheritance and residual brother–brother dependence. Ann Hum Genet 67:125–137. pii:022 Vijayakumar S, Garcia D, Hensel CH, Banerjee M, Bracht T, Xiang R, Kagan J, Naylor SL (2005) The human Y chromosome suppresses the tumorigenicity of PC-3, a human prostate cancer cell line, in athymic nude mice. Genes Chromosomes Cancer 44:365–372. doi:10.1002/gcc.20250 Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442 Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678. doi:10.1038/nature05911 Wiik K (2008) Where did European men come from? J Gen Genealogy 4:35–85 Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, Minichiello MJ, Fearnhead P, Yu K, Chatterjee N, Wang Z, Welch R, Staats BJ, Calle EE, Feigelson HS, Thun MJ, Rodriguez C, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Gelmann EP, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover R, Hunter DJ, Chanock SJ, Thomas G (2007) Genome-wide association study of prostate cancer identiWes a second risk locus at 8q24. Nat Genet 39:645–649. doi:10.1038/ng2022 Y Chromosome Consortium (2002) A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Res 12:339–48. doi:10.1101/gr.217602 Yeager M, Chatterjee N, Ciampa J, Jacobs KB, Gonzalez-Bosquet J, Hayes RB, Kraft P, Wacholder S, Orr N, Berndt S, Yu K, Hutchinson A, Wang Z, Amundadottir L, Feigelson HS, Thun MJ, Diver WR, Albanes D, Virtamo J, Weinstein S, Schumacher FR, Cancel-Tassin G, Cussenot O, Valeri A, Andriole GL, Crawford ED, Haiman CA, Henderson B, Kolonel L, Le Marchand L, Siddiq A, Riboli E, Key TJ, Kaaks R, Isaacs W, Isaacs S, Wiley KE, Gronberg H, Wiklund F, Stattin P, Xu J, Zheng SL, Sun J, Vatten LJ, Hveem K, Kumle M, Tucker M, Gerhard DS, Hoover RN, Fraumeni JF Jr, Hunter DJ, Thomas G, Chanock SJ (2009) IdentiWcation of a new prostate cancer susceptibility locus on chromosome 8q24. Nat Genet 41:1055–1057. doi:10.1038/ng.444 123