Atomic layer epitaxy of rare earth oxide films on GaAs(111)A and their device properties Yiqun Liu1)*, Min Xu2), Jaeyeong Heo1), Peide D. Ye2), and Roy G. Gordon1)** 1) Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, U.S.A. 2) School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, U.S.A. Email:* yiqunliu@fas.harvard.edu, ** gordon@chemistry.harvard.edu The aggressive scaling of MOSFETs has created interest in using high-mobility III-V channel materials to replace traditional strained Si. However, it has been challenging to form highdielectrics that can passivate III-V surfaces with a low interface state density (Dit). We deposited LaLuO3 high- dielectric layer by ALD on sulfur-passivated GaAs substrates. The precursors lanthanum tris(N,N'-diisopropylformamidinate), and lutetium tris(N,N'-diethylformamidinate) reacted with water vapor at 350 oC. The compositional ratio of La:Lu was about 1:1 by using one cycle of La2O3 followed by one cycle of Lu2O3 in one complete cycle of LaLuO3. Both highresolution XRD analysis and TEM showed that ALD LaLuO3 formed epitaxially on GaAs(111)A substrates, as shown in Figures 1 and 2, respectively. The epitaxial layer exhibited a cubic structure with a lattice constant smaller than GaAs by 3.8%. The LaLuO3 film had a high degree of crystalline perfection and was relaxed and not strained. Electrical characterizations showed the measured dielectric constant of around 30, which is close to its bulk crystalline value. The interface had a low interface state density (Dit) of ~7×1011 cm-2eV-1. The amount of lattice mismatch can be engineered by choosing various rare-earth oxides. ALD La2O3 formed cube-oncube epitaxy on GaAs(111)A with a lattice constant just +0.9% larger than that of the substrate. The mismatch can be reduced to zero by adding some Y2O3 to the La2O3, using yttrium tris(N,N'diisopropylactamidinate)/H2O cycles. Perfect zero-mismatched epitaxy was achieved on GaAs(111)A by depositing La1.7Y0.3O3, as shown in Figure 3. The effects of mismatch on the electrical properties of epi-LaYO3 on GaAs(111)A were studied. These results suggest that atomic layer epitaxy of rare-earth oxides/GaAs(111)A is a promising structure for future generations of high-power/high-frequency analog devices or high-speed logic devices. Figure 1 (a) High-resolution X-ray omega-two theta scan for LaLuO3 film on GaAs(111)A. (b) and (c) The rocking curves of the LaLuO3 (222) peak and the GaAs(111) peak, respectively. Figure 2 (a) Crosssectional TEM of LaLuO3/GaAs(111)A heterostructure. (b) A magnified image of the interface. Figure 3. Cross-sectional TEM of La1.7Y0.3O3/GaAs(111)A. The mismatch is zero for this composition with 15% Y2O3 Atomic Layer Epitaxy of Rare Earth Oxide Films on GaAs and Device Properties 2011 ALD Meeting Yiqun Liu1), Min Xu2), Jaeyeong Heo1), Peide D. Ye2), and Roy G. Gordon1) 1) Department of Chemistry and Chemical Biology, Harvard University 2) School of Electrical and Computer Engineering, Purdue University 1 Motivation • High and high mobility for future scaling • GaAs: high electron mobility • I Issue: small IDS i G A NMOSFET Í F ll in GaAs Fermi l l pinning i level i i • Fermi level unpinning: GaAs(111)A with ALD Al2O3* (Prof. Ye’s group at Purdue) * “Metal oxide semiconductor field effect transistors on GaAs (111)A surface with atomic layer deposited Al2O3 as gate dielectrics.” M. Xu, Y. Q. Wu, O. Koybasi, T. Shen, and P. D. Ye, Appl. Phys. Lett. 94, 212104 (2009). 2 High on GaAs for EOT scaling on G A GaAs Band B d gap (eV) Ec E (eV) 1.8 1.8 1.6 2 2 2.1 Ev E (eV) 3.4 3 2.8 2.3 2.3 2.2 Al2O3 12 15 22 23 32 (bulk) 5.6 5.6 5.7 5.8 6.2 8 6.5 HfO2 LaAlO3 GdScO3 LaScO3 LaLuO3 “Band offsets of high K gate oxides on III V semiconductors” J. Robertson and B. Falabretti, J. Appl. Phys. 100, 014111(2006) 3 ALD process for LaLuO3 films • Metal amidinate precursor for ALD La2O3: • Lanthanum tris(N,N’ diisopropylformamidinate) or La(iPr2 fAmd)3 tris(N,N i H Pr • white solid i Pr N • most volatile La compound known, N iPr N 60 mTorr at 100 oC o 00 La H N N iPr • high reactivity to H2O, O2 and NH3 i Pr N i Pr H • Metal amidinate precursor for ALD Lu2O3: Et Et N H N Et N Et N Lu • Lutetium tris(N,N’ diethylformamidinate) or Lu(Et2 fAmd)3 • more volatile than La(ipr2 fAmd)3 H N Et N Et H 4 ALD process for LaLuO3 films H2O Oven (118 oC) O N2 purge Furnace Heater (350 ( oC) ) Lu(Et2 fAmd)3 La(iPr2 f d)3 ( fAmd) N2 carrier ALD process condition for LaLuO3 Oxidant DI H2O 118 oC Bubbler temp. Deposition temp. 300 350 oC La2O3 : Lu2O3 1:1 Exposure 0.003 Torr s for metal precursor p 0.06 Torr s for H2O MO precursors ( ) La(iPr2 fAmd)3 Lu(Et2 fAmd)3 5 Properties of ALD LaLuO3 top • Composition (RBS) • La:Lu=1:0.9 • 80% of bulk density • C and N not d t t bl d t detectable • Amorphous on Si with abrupt interface ( ~26) • Highly conformal (90% step coverage) middle 1.85 1.80 Energy (MeV) 30 1.70 1.75 25 LaLuO3 (14 nm) RBS LaLuO LaLuO3 3 Si Lu 20 Glass carbon 15 Normalized Yield 10 Si(111) 5 nm 5 nm 200 nm 10 nm bottom 5 La 0 1240 1320 1340 1360 1380 1260 1280 1300 Channel *H. Wang, J. J. Wang, R. Gordon, J. S. M. Lehn, H. Li, D. Hong, and D. V. Shenaic, Electrochem. Solid State Lett. 12, G13 (2009). TEM, aspect ratio: 65:1* 6 Properties of ALD LaLuO3 on GaAs(111)A Plan view Pretreatment: Step 1: HCl:H2O=1:1 for 30 sec (native oxide removal) Step 2: (NH4)2S 20% for 10 min (S passivation) Epitaxy! 6 nm ALD LaLuO3 (350 oC) GaAs(111)A 5 nm Zone axis [111] • Lattice mismatch ~ 4%* • Relaxed • Epitaxy: cubic, not orthorhombic! p y , * defined as (aoxide 2a)/2a “Hetero epitaxy of single crystal LaLuO3 on GaAs(111)A by atomic layer deposition” Yiqun Liu, Min Xu, Jaeyeong Heo, 7 Peide D. Ye, and Roy G. Gordon, App. Phys. Lett. 97, 162910 (2010). Quality of ALD epi LaLuO3 on GaAs(111)A 300 • High resolution XRD measurements LaLuO3(222) 200 10 100 5 16.5 arcsec 10 3 Inte ensity GaAs(111) LaLuO3(222) 14.28 14 28 0 14.29 14 29 14.30 14 30 log(intensity y) 10 14.0 14.5 15.0 1 o Z( ) 13.5 150 GaAs(111) 100 50 0 13.66 ZT ( ) o 16.2 arcsec • Crystalline uniformity Inte ensity (X10 00) • Mismatch ~ 3.8% • FWHM of the film peak o Z( ) 13.67 The quality of epitaxy is comparable to GaAs 8 Substrate dependent crystal structures Glue LaLuO3 (222) LaLuO3 (400) GaAs(111) (200) GaAs(100) 5 nm c Zone axis [110] Z i GaAs (100) LaLuO3 (440) GaAs (200) • Cubic polycrystalline with (110) preferential orientation on GaAs(100) 9 Yiqun Liu, Min Xu, Jaeyeong Heo, Peide D. Ye, and Roy G. Gordon, App. Phys. Lett. 97, 162910 (2010). Substrate dependent crystal structures LaLuO3 Si(111) 5 nm 5 nm LaLuO3 Si(100) • Amorphous on Si (0.18% mismatch) (0 18% • Silicate IL formation Æ Disturb ordering of substrate. Epi LaLuO3/GaAs(111)A: no amorphous IL desirable for EOT scaling 10 1 J. Kwon, M. Dai, M. D. Halls, E. Langereis, Y. J. Chabal, and R. G. Gordon, J. Phys. Chem. C 113, 654 (2009). 2 Yiqun Liu, Shaoping Shen, Leonard J. Brillson, and Roy G. Gordon, , App. Phys. Lett. 98, 122907 (2011). Electrical properties 8 nm Al2O3 • Epi LaLuO3 v.s. a Al2O3 on GaAs(111)A GaAs(111)A 8 2 6 nm Al2O3 10 nm LaLuO3 1 kHz 10 kHz 100 kH kHz 1 MHz 1 kHz 10 kHz 100 kH kHz 1 MHz GaAs(111)A 6 4 2 0 300 K 2 8 6 1 kHz 10 kHz 100 kH kHz 1 MHz 1 kHz 10 kHz 100 kH kHz 1 MHz C C (fF/Pm2) 2 -2 0 423 K 2 C C (fF/Pm ) -2 4 -2 0 300 K 2 -2 0 423 K 2 Gate Bi (V) G t Bias(V) 2 Gate Bias (V) LaLuO3/GaAs(111)A Al2O3/GaAs(111)A 9Dielectric constant is ~30 2 Dit (x10 cm-2eV-1) 13 9Smaller VFB & frequency dispersions 1 9Interface state density (Dit) ~ 7×1011 cm 2 eV 1 LaLuO3/GaAs(111)A : better interface 0 1.05 1.10 1.15 1.20 E-EV (eV) 11 Lattice mismatch engineering • ALD La2O3 on GaAs(111)A • nearly zero lattice mismatch (+0.8%) • cubic phase (not tetragonal), ~23 23 La2O3 (440) ( ) La2O3 GaAs (220) GaAs(111)A Zone axis [111] 12 Lattice mismatch engineering Sc Adjust lattice parameters to get perfect lattice match Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb C N N aY2O3 =1.061 nm Y aLa2O3 =1.141 nm La 2*a 2* GaAs = 1 130 nm Ce 1.130 Lu • Metal amidinate precursor for ALD Y2O3 Y(iPr2 amd)3 N C N • Yttrium tris(N,N’ diisopropylacetamidinate) or • White solid, less volatile Y Yb N N C • ALD LaYO3 @300 oC Lattice mismatch +0.8% 0 2.5% 6% Subcycle ratio Composition La2O3 : Y2O3 La2O3 La1.7Y0.3O3 La1Y1 O3 Y2O3 1:0 3:1 1:2 0:1 13 Summary • Substrate dependent structures of ALD LaLuO3 • Epitaxy on GaAs(111)A • Poly. on GaAs(100) • Amorph on Si Amorph. • Promising electrical properties of epi LaLuO3/GaAs(111)A • High and low Dit • Fermi level is unpinned • Lattice mismatch engineering • La1.7Y0.3O3 on GaAs(111)A: perfect lattice match 14 Acknowledgements • Prof. Roy Gordon and all group members • Prof Peide D Ye and Min Xu Prof. D. • Dr. Jun Jieh Wang prepared Lu precursor • Dow Chemical provides La and Y precursor • Center for Nanoscale Systems (CNS) at Harvard 15 Electrical properties 6 nm Al2O3 10 nm LaLuO3 • Effect of sulfur passivation Eff f lf i i GaAs(111)A Without passivation Sulfur passivation 8 1 kHz 10 kHz 100 kHz (a) 6 C (fF/Pm2) m 4 2 -1 0 1 2 3 -3 -2 Voltage (V) All devices: RTA in N2 at 700 oC before Ni electrodes were patterned on the devices. 16 Electrical properties 6 nm Al2O3 • GaAs(111)A v.s. GaAs(100) G A (111)A G A (100) 10 nm LaLuO3 6 nm Al2O3 10 nm LaLuO3 GaAs(111)A 1 kHz 10 kHz 100 kHz GaAs(100) 8 6 4 2 1 kHz 10 kHz 100 kHz 8 6 C (fF/Pm2) m 2 -3 -2 -1 0 1 2 3 C (fF/Pm2) m -3 4 -2 -1 0 1 2 3 Voltage (V) Voltage (V) ‰ Fermi level is partially pinned and Dit is higher on GaAs(100). ‰ Fermi level is unpinned on GaAs(111)A. 17