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Abstract

Inference for dynamic systems and conformational sampling for protein folding are

two problems motivated by applied data, which pose computational challenges from

a statistical perspective. Dynamic systems are often described by a set of coupled

differential equations, and methods of parametric estimation for these models from

noisy data can require repeatedly solving the equations numerically. Many of these

models also lead to rough likelihood surfaces, which makes sampling difficult. We

introduce a method for Bayesian inference on these models, using a multiple chain

framework that exploits the underlying mathematical structure and interpolates the

posterior to improve efficiency. In protein folding, a large conformational space must

be searched for low energy states, where any energy function constructed on the states

is at best approximate. We propose a method for sampling fragment conformations

that accounts for geometric and energetic constraints, and explore ideas for folding

entire proteins that account for uncertain energy landscapes and learning from data

more effectively. These ingredients are combined into a framework for tackling the

problem of generating improvements to protein structure predictions.
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Chapter 1

A Multiple-Chain Framework for

Dynamic Systems Inference

We propose an efficient MCMC scheme for estimating parameters in dynamic

systems governed by a set of ordinary differential equations (ODEs), which are fre-

quently used to describe behaviors in science. The data observed are usually noisy

and collected at discrete time intervals as the system evolves. Bayesian and likelihood-

based inference for these systems face two main computational challenges: the rough

shapes of likelihood surfaces encountered, and the time required for numerically solv-

ing the differential equations. We address the first of these challenges by proposing

a framework that introduces a latent variable to control the noise level in the model,

producing multiple chains of Monte Carlo samples of parameters to allow the coarser

chains to improve convergence of the finer chains. Samples from the chains can be

combined to provide more efficient estimates for quantities of interest. While this

improves sampling for the rough posterior surfaces often encountered in these mod-
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Chapter 1: A Multiple-Chain Framework for Dynamic Systems Inference

els, it still relies heavily on numerical ODE solvers, such as Runge-Kutta methods.

Calling the numerical solver at every iteration creates a computational bottleneck,

especially for larger models or stiff ODE systems. To tackle this second challenge

and reduce the frequency at which the numerical solver is used, we propose the use

of an interpolating function on the closeness of the solution to observed values, while

retaining estimation accuracy.

1.1 Two examples

The parameter estimation problem for dynamic systems is motivated by the fre-

quent use of coupled ordinary differential equations to describe behaviors in science.

We begin by providing two concrete examples.

1.1.1 Oscillation of mRNA and protein levels in cultured

cells

The oscillation of hes1 mRNA and Hes1 protein levels in cultured cells, which

exhibit the behavior of regulation via negative feedback, is described in Hirata et al.

(2002): “a simple negative feedback loop, in which Hes1 represses transcription from

the hes1 promoter, would be insufficient to maintain a stable oscillation, because this

system would rapidly fall into equilibrium”. The authors thus postulate the existence

of a Hes1-interacting factor to explain this phenomenon. This system can be described
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Chapter 1: A Multiple-Chain Framework for Dynamic Systems Inference

by the following set of nonlinear ordinary differential equations:

dx1
dt

= −Ax1x3 +Bx2 − Cx1

dx2
dt

= Dx2 +
E

1 + x21
dx3
dt

= −Ax1x3 +
F

1 + x21
−Gx3, (1.1)

where x1 is the concentration of Hes1 protein, x2 is the concentration of hes1 mRNA,

and x3 is the concentration of the Hes1-interacting factor. The system has seven

parameters: A,B govern the rate of protein synthesis in the presence of the interacting

factor, C,D,G are the rates of decomposition, and E,F are inhibition rates.

After serum treatment, mRNA and protein levels are measured every 30-45 min-

utes. To illustrate the overall oscillatory behavior, Figure 1.1 shows the plot of mRNA

and protein levels simulated from this system, assuming a measurement interval of

30 minutes. In practice, the sequence of observations on x1 and x2 over the course of

the cell culture will also be subject to measurement uncertainty.

As an example of a parameter estimation problem, suppose that the decomposi-

tion and inhibition rates are fixed, and A,B are unknown. Assuming independent

additive Gaussian measurement noise with σ = 0.1, a likelihood can be defined on

the parameters by computing the normal densities at the observed data points, with

means at the numerical solution corresponding to the parameters. Fixing σ = 0.1, a

plot of this likelihood surface as a function of A and B appears in Figure 1.2. The

shape is rough, with sharp ridges where the behavior of the ODE is very sensitive to

parameter values.

3
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Figure 1.1: Data simulated from ODE system (1.1), with parameter values A = 0.022,
B = 0.3, C = 0.031, D = 0.028; E = 0.5, F = 20, G = 0.3 as taken from Hirata et al.
(2002). Plot shows hes1 mRNA and protein levels, assuming perfect measurements
are taken every 30 minutes. An oscillatory cycle of approximately 2 hours can be
observed.
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Figure 1.2: Likelihood surface of (1.1), when A,B are unknown. Additive Gaussian
noise with σ = 0.1 has been added.
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1.1.2 HIV viral fitness

Data from HIV viral fitness experiments in vitro are modeled by a set of ordinary

differential equations by Miao et al. (2009). Replication fitness is evaluated on an

assay, where different variants (e.g. mutant and wildtype) of HIV-1 viruses must

compete for targeted cells in the same environment. A simplified model of cell counts

can be expressed using the following set of ODEs (Miao et al., 2008):

dT

dt
= (ρ− kmTm − kwTw − kRTmw)T

dTm
dt

= (kmT − qmTw)Tm + 0.25kRTmwT

dTw
dt

= (kwT − qwTm)Tw + 0.25kRTmwT

dTmw

dt
= 0.5kRTmwT + (qm + qw)TwTm, (1.2)

where T, Tm, Tw, and Tmw are numbers of uninfected cells, cells infected by mutant

virus, cells infected by wildtype virus, and cells infected by both; ρ is the net growth

rate of T; (km, kw, kR) the infection rates of mutant virus, wildtype virus, and virus

from dually infected cells, respectively; and qm and qw the dual infection rates. In

this setting, approximate cell counts are observed at given time points; the unknown

rates are the quantities of interest and must be estimated.

1.2 Background

The two examples illustrate the general setting under which estimates for pa-

rameters in dynamic systems are sought. We are given a set of ordinary differential
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equations, often nonlinear,

dx(t)

dt
= f(x, t|θ)

where the vector x(t) is the list of N system outputs that evolve over time, over an

interval t ∈ [0, T ], and θ is the vector of parameters that must be estimated from

experimental data. Assuming that f is continuously differentiable with respect to

x, solutions of the ODE exist and are unique given initial values x(0). Most non-

linear ODE systems are not solvable analytically. Numerical methods (such as the

fourth-order Runge-Kutta method) do provide reasonably accurate solutions, when

parameter values are given.

In practice, experimental data from ODEs will be recorded at discrete time points,

and may be noisy or subject to measurement error. In addition, some compo-

nents of the system may not be observed (e.g. the hypothetical Hes1-interacting

factor). Suppose that for each observable system component i, we obtain data

yi(t1), yi(t2), . . . , yi(tn), for 0 < t1 < t2 < . . . < tn < T , with

yi(tj) = gi(xi(tj)) + eij,

i = 1, . . . , N and j = 1, . . . , n. Here, the noise term eij is assumed to be iid, addi-

tive and normal, after appropriate transformations gi (if necessary) on the original

measurements.

One of the earliest methods developed to estimate parameters under this setting

is nonlinear least squares (NLS), as studied in Biegler et al. (1986). A trial set

of parameters is chosen, and a numerical method (e.g. Euler discretization, Runge-
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Kutta) is used to approximate the solution given the parameters and initial conditions,

obtaining x̂i(tj|Θ) for observed components i = 1, . . . , N and j = 1, . . . , n. The

parameter estimate is the vector θ̂ that minimizes the objective function

N∑
i=1

n∑
j=1

(yi(tj)− x̂i(tj|θ))2

Methods such as gradient descent or Gauss-Newton can be used, for performing the

minimization. The downsides of this approach are that a numerical solution of the

ODE is required for each set of trial parameters, and additional computation is re-

quired to obtain interval estimates. Convergence might not be reliable if the starting

point is poor.

More recently, a number of methods have been proposed to reduce the computa-

tional burden of repeatedly evaluating the ODE numerical solver. From a frequentist

point of view, one class of such methods involves the construction of basis functions

or splines. As a representative example, consider the generalized smoothing method

developed by Ramsay et al. (2007), which eliminates the use of the numerical solver.

The system components xi are expressed in terms of a basis function expansion, where

the number of basis functions is chosen so as to allow enough flexibility in the behavior

of estimated functions x̂i(t) to satisfy the ODE system. Much of the computational

burden is thus shifted to obtaining estimates for both the parameters of interest θ

as well as the coefficients of the basis functions. The method also provides linear

approximations for interval estimates based on analytic derivatives.

In our work, we will take a Bayesian approach paired with Markov Chain Monte

Carlo (MCMC) based methods. ODE models may suffer from identifiability issues,

8
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as noted by Miao et al. (2009) and Huang et al. (2006). Practitioners may also

have competing models in mind to describe the experimental data. Obtaining the

entire posterior distributions of the parameters would be very useful for characterizing

this type of uncertainty, which would not be as amenable from a likelihood-based

perspective alone.

The simplest Bayesian approach is to apply a prior on the parameters θ, and allow

the observed y at times tj to follow

yi(tj)|θ, σ2 ∼ N(x̂i(tj|θ), σ2), (1.3)

where x̂(tj|θ) denotes the numerical solution of the ODE system given the set of

parameters, and error variance σ2. The posterior distribution of θ is then given by

p(θ|y) ∝ π(θ)
∏
i,j

p(yi(tj)|θ, σ2).

Standard Metropolis-Hastings techniques can then be used to update θ and draw

samples from its posterior density. This idea was outlined in Gelman et al. (1996).

This basic approach suffers from some of the same drawbacks as NLS, namely that

many evaluations of the numerical solver are required, and convergence might be slow

due to the rough posterior surface. A hierchical Bayesian extension of this approach

was used by Huang et al. (2006) to study HIV dynamics; the model was fitted using

standard Metropolis techniques with multivariate normal proposal densities. Due

to the roughness of posteriors associated with dynamic models, tuning appropriate

proposals can be difficult. It can be possible to reduce this problem by using adaptive

9
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proposals, e.g. Haario et al. (2006), but convergence can still fail.

A general solution for sampling from rough, multimodal densities is parallel tem-

pering, as introduced in Swendsen and Wang (1986). This has been applied for

sampling from posteriors of ODE parameters, e.g. Campbell (2007). While this

multiple-chain technique is generally applicable, sampling could potentially be more

efficient if the error structure of the ODE model were to be exploited. Also for com-

plicated posteriors, convergence may be faster when the histories of previous chains

are saved, in the spirit of the equi-energy sampler (Kou et al., 2006). A development

of this idea will be the focus of the remainder of this chapter.

1.3 A multiple-chain method

Our goal in this section is to provide a multiple-chain method to sample effectively

from posteriors corresponding to ODE parameters, assuming normal measurement

noise. The key ideas are as follows: (1) We will flatten out the likelihood by intro-

ducing artificial noise, at the level of measurement error. (2) Multiple Monte Carlo

chains will be constructed, by controlling the artificial noise level. (3) The coarser

chains will be used to speed up the convergence of finer chains.

Assume that measurement noise is iid and normal across all system components,

and begin with the basic Bayesian formulation as in equation (1.3). Then, introduce

a latent variable z(tj), such that the following conditional distributions hold for the

latent z(tj) and the observed y(tj):

y(tj)|z(tj), θ, σ2, ϵ2 ∼ N(z(tj), ϵ
2I)

10
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z(tj)|θ, σ2 ∼ N(x̂(tj|θ), σ2I). (1.4)

We are free to choose the noise parameter ϵ, which serves to flatten out the likelihood

and thus also increases the ease of drawing samples and navigating the space. In

other words, z(tj) is an artificially noise-contaminated version of the ODE solution.

At ϵ = 0, we recover the original model.

The likelihood function for any particular choice of ϵ is

L(θ, σ2|Y) =
n∏

j=1

p(y(tj)|θ, σ2)

=
n∏

j=1

∫
p(y(tj)|z(tj), θ, σ2, ϵ2)p(z(tj)|θ, σ2)dz(tj).

With normal errors, the integral can be computed analytically, directly giving

y(tj)|θ, σ2, ϵ2 ∼ N
(
x̂(tj|θ), (σ2 + ϵ2)I

)
.

As before, specifying priors on θ, σ2 completes the posterior density. The log-posterior

for an artificial noise term ϵ can then be written as

log p(θ, σ2|Y, ϵ) =

−nN
2

log(σ2 + ϵ2)− 1

2(σ2 + ϵ2)

N∑
i=1

n∑
j=1

(yi(tj)− x̂i(tj|θ))2 + log π(θ, σ2) + const.

The primary effect of ϵ is to rescale the sum of squares discrepancy (i.e. the objective

function of NLS) from the observed data.

Sampling with this framework begins with a first chain, where we choose a value ϵ

11
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sufficiently large, such that a tuned Metropolis-Hastings algorithm (e.g. with multi-

variate normal proposals) can adequately explore the surface of the noise-contaminated

model. Initial parameter values are chosen, and an appropriate burn-in period is run.

Samples during the burn-in are discarded; subsequent samples are collected to form

an empirical distribution for this chain.

Sampling for the second and subsequent chains proceeds as follows. First, pick a

value of ϵ smaller than the previous chain, and randomly draw a starting set of param-

eters from the previous chain. Then, at each parameter update step, with probability

1 − p a regular MCMC step is run. With probability p, a set of parameters is uni-

formly drawn from the previous chain, which is used as an independent Metropolis

proposal. One limitation of parallel tempering is that swaps between chains can only

occur between current states. Instead, we draw from the entire posterior distribution

of the previous chain. The proposals drawn from the higher level, coarser chain fa-

cilitate faster convergence for the chain at hand. A burn-in period is run as before,

after which samples again are collected for an empirical distribution. This procedure

continues until the final chain, where the noise term is set at ϵ = 0 to recover the

original model.

The sampling scheme can be formalized as follows.

A multiple-chain scheme for sampling ODE parameter posteriors

Let p(i)(θ) ≡ p(θ, σ2|Y, ϵi), where the sequence of ϵi satisfy ϵ1 > ϵ2 > . . . > ϵK = 0

Choose an initial value θ
(1)
0 .

For m = 1, 2, . . .

12
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perform a MH step to update θ
(1)
m−1 to θ(1)m as a draw from p(1)(θ)

if m > burn-in

save θ(1)m as sample for construction of empirical distribution p̂(1)(θ)

For i = 2, . . . , K

draw θ
(i)
0 uniformly from p̂(i−1)(θ)

For m = 1, 2, . . .

with probability 1− p, perform a MH step to update

θ
(i)
m−1 to θ(i)m as a draw from p(i)(θ)

with probability p, draw a proposal θ∗ uniformly from p̂(i−1)(θ)

let θ(i)m = θ∗ with probability min

(
1,
p(i)(θ∗)p(i−1)(θ

(i)
m )

p(i)(θ
(i)
m )p(i−1)(θ∗)

)

let θ(i)m = θ
(i)
m−1 otherwise

if m > burn-in

save θ(i)m as sample for construction of empirical distribution p̂(i)(θ)

1.4 Numerical illustrations

Consider fitting the mRNA/protein oscillator model, with data generated as de-

scribed above. First assume that all three components are observed. Set vague priors

Gamma(0.001, 0.001) for A and B, and IGamma(0.001, 0.001) for σ2. Set p = 0.3, the

probability of drawing from the previous chain at any given step. For the Metropolis

updates at each iteration, A,B are sampled together from the posterior and σ2 is

13
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sampled separately. In the first chain, we begin sampling from a poor starting value,

A = B = σ = 1. A fourth-order Runge-Kutta numerical solver is used for each set of

sampled parameters.

Trace plots and autocorrelations for the multiple-chain scheme are shown in Figure

1.3. Starting with a sufficiently large artificial noise, the first chain has adequate

convergence properties with a vanilla MH sampler. As we move to subsequent chains,

a noticeable improvement in the autocorrelation plots can be seen, owing to the

independent proposals drawn from the previous chain. The true values A = 0.022 and

B = 0.3 are generally well-covered by the samples over the different noise levels, and

the mode becomes sharper as ϵ is reduced. Since the roles of ϵ and the measurement

error σ overlap, its distribution shifts the most as ϵ is reduced to zero. The true value

of σ2 = 0.01 only becomes apparent in the final chain. See Figure 1.4.

The application of this sampling scheme only requires a small adjustment when

system components are partially observed. In this mRNA and protein Hes1 example,

the Hes-1 interacting factor is hypothetical and cannot be observed. The correspond-

ing terms in the likelihood are integrated out, but otherwise estimation proceeds in a

similar manner. The smoothed density estimates are compared for the final chain in

Figure 1.5. It can be seen that the posterior distributions obtained using the complete

data are sharper and with less bias, than with a missing component.

Next, consider the HIV model. One replicate of the experimental data, as reported

in Miao et al. (2009) appears in Table 1.1. With this real data example, there is no

true parameter value; the objective is to provide the best estimates for the given model

structure. It seems reasonable to assume in this case that the measurement errors are

14
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ϵ2 = 50 ϵ2 = 1

ϵ2 = 10 ϵ2 = 0.2

ϵ2 = 3 ϵ2 = 0

Figure 1.3: Trace plots and autocorrelations from multiple-chain scheme for mRNA
and protein oscillatory example. The sequence of artificial noise levels are indicated
in the figure.
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Figure 1.4: Kernel density estimates, illustrating the shifts in the posterior density of
the parameters over changes in the noise level ϵ.

iid, normal, and additive after a log transformation, i.e. log(yi(tj)) = log(x̂i(tj))+eij.

The results for posterior parameters are listed in Table 1.2. We find that our 95%

intervals are somewhat narrower than those reported by the authors for this particular

model, and the point estimates are similar.

Table 1.1: Measured numbers of HIV infected cell counts, taken from Miao et al.
(2009).

time (hours) T Tm Tw Tmw

70 32,554,830 134,173 26,180 9,818
94 46,645,200 481,950 103,950 18,900
115 64,240,540 1,230,460 309,260 26,320
139 65,563,680 9,863,280 3,000,480 1,364,580
163 36,366,400 36,545,600 10,281,600 28,806,400

1.5 Implementation heuristics

Here we provide some practical guidelines for implementing the proposed sampling

scheme.
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Figure 1.5: Kernel density estimates for final chain, comparing posteriors of fully
observed system (solid) with mRNA and protein levels only (dashed).

Table 1.2: Parameter estimate and posterior intervals for HIV data.

Parameters Estimate(median) Central 95% posterior interval
ρ 1.41E-02 1.26E-02 1.55E-02

km 1.16E-09 1.14E-09 1.19E-09
kw 1.30E-09 1.28E-09 1.36E-09
kR 5.06E-10 4.86E-10 5.77E-10
qm 3.62E-09 3.59E-09 3.65E-09
qw 1.56E-09 1.49E-09 1.58E-09
σ2 9.85E-02 8.61E-02 1.15E-01
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For the first chain, the choice of ϵ is very important. It is essential that the

first chain is able to explore the entire space; if a region is missed in the first chain,

subsequent chains will be very unlikely to sample those regions, as the posterior

surface becomes increasingly rough. The reliability of subsequent chains will be only

as good as the chains before it. Therefore, if the nature of the posterior is not well

known, it is advisable to set ϵ as large as necessary. For this purpose it may be

helpful to run the numerical solver for a number of selected points within the likely

parameter space, to gauge the range of the log-posterior. Setting ϵ1 to be quite large

may increase the number of chains K ultimately required to bridge the model to

ϵK = 0, but this tradeoff may be necessary to obtain correct results. Also, note

that there is no upper limit on this allowable artificial noise level relative to the true

measurement error; the posterior only becomes further flattened.

We also recommend tuning the proposal variance (assuming MVN proposals) dur-

ing each chain. A short number of iterations can be run, and adjustments can be

made adaptively. Earlier chains should have larger proposal step sizes, since the pos-

terior surface is flatter. The purpose of the the MH move in later chains is for local

exploration, and intuitively will use smaller proposal step sizes. These chains will rely

on the cross-chain proposal to move to distinct regions in the parameter space.

The ladder of ϵ for subsequent chains should be chosen to maintain a reasonable

acceptance rate for the cross-chain move, when it is proposed. Again, there is a

tradeoff. If the ratio of ϵi/ϵi−1 is too small, the distributions p(i)(θ) and p(i−1)(θ)

can be quite different. In this case, p(i−1)(θ) is not a very good proposal density for

p(i)(θ) and most samples will be rejected. This defeats the purpose of constructing
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the previous chain to improve convergence of the next chain. On the other hand,

if ϵi/ϵi−1 is too close to 1, then p(i)(θ) and p(i−1)(θ) will overlap significantly. Most

samples will be accepted, but such a choice does little to bridge the gap towards the

ultimate ϵ = 0 chain. As such, more chains than necessary would be constructed,

losing efficiency. In practice, we find that a cross-chain acceptance rate of around

30% is a reasonable compromise.

Another adjustable setting is the frequency of attempting cross-chain moves. Since

our cross-chain sample bears resemblance to the drawing of samples from empirical

energy rings in the equi-energy sampler (Kou et al., 2006), that provides a basic

guideline. Heuristically, we suggest a similar or somewhat higher frequency of these

attempts compared to the equi-energy sampler, in the range of 30%, as we are drawing

from the entire distribution. This setting can be dynamically tuned, if necessary,

based on the observed autocorrelations as the chain is sampled.

Finally, we note that the scheme can be implemented either on a single CPU,

or parallelized over multiple CPUs. If running on a single CPU, subsequent chains

are run in order. The coarser chain is stopped when sufficient samples of p̂(i)(θ)

have been collected, and the next chain is started. Sampling then proceeds to the

next chain. When multiple CPUs are available, coarser chains do not have to be

stopped. We can continue to build samples for p̂(i)(θ) after the next chain is started.

The pool of available draws for p̂(i+1)(θ) continues to grow in this case, providing

a more accurate empirical distribution to be drawn from by the next chain. The

extra samples available from higher chains can also be useful for the final inference,

as shown in the next section.
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1.6 Inference with multiple chains

In this section, suppose we are interested in inference for some function of the

parameter vector h(θ), such as tail probabilities and posterior intervals. In the im-

plementation of the multiple chain scheme, the final chain with ϵK = 0 corresponds

to the original model, for which we have draws from the distribution p(K)(θ). The

quantity of interest is then

EK [h(θ)] =

∫
h(θ)p(K)(θ) dθ.

The simplest unbiased estimate is the sample mean based on the empirical distribution

p̂(K)(θ) which contains the draws θ
(K)
1 , . . . , θ

(K)
m ,

Ê
(K)
K [h(θ)] =

1

m

m∑
j=1

h(θ
(K)
j ). (1.5)

The sampler also provides draws from the distributions of the previous chains

p(1)(θ), . . . , p(K−1)(θ), which are based on varying levels of added artificial noise ϵ.

The question of interest is how to use the samples saved in p̂(1)(θ), . . . , p̂(K−1)(θ) to

improve the estimation of EK [h(θ)]. We follow the reasoning outlined in Kong (1992).

For each chain i = 1, . . . , K − 1, we will require an importance weight adjustment.

Let w(i)(θ) = p(K)(θ)/p(i)(θ). Then an unbiased estimate based on the i-th chain is

Ê
(i)
K [h(θ)] =

∑m
j=1 h(θ

(i)
j )w(i)(θ

(i)
j )∑m

j=1w
(i)(θ

(i)
j )

This is equivalent to the usual importance weight-adjusted estimate, Ê
(i)
K [h(θ)] =
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∑m
j=1 h(θ

(i)
j )w(i)(θ

(i)
j ), when the weights have been standardized, i.e. w̃(i)(θ

(i)
j ) =

w(i)(θ
(i)
j )/w̄(i), where w̄(i) denotes the sample average of the weights for chain i. This

procedure yields K unbiased estimates of EK [h(θ)], which must be combined into

a single estimate. One approach is to weight them inversely proportional to their

variances, disregarding the dependence.

Write v(i) = h(θ(i))w(i)(θ(i)), then the above estimate can be re-expressed as

Ê
(i)
K [h(θ)] = v̄(i)/w̄(i). Letting g(v, w) = v

w
, with derivatives gv(v, w) = 1

w
and

gw(v, w) = − v
w2 , applying the Delta method gives

V ar(i)
(
v̄(i)

w̄(i)

)
≈ 1

m

(
− E(V (i))

E(W (i))2
1

E(W (i))2

)σV V σVW

σVW σWW


− E(V (i))

E(W (i))2

1
E(W (i))2


=

1

m

(
σV VE(V

(i))2 + σWW − σVW2E(V (i))
)
,

since E(W (i)) = 1, and where the expectations and covariances are computed over

p(i)(θ). Sample quantities can thus be substituted to complete the approximation.

The final estimate is then

ÊK [h(θ)] =

∑K
i=1[V̂ ar

(i)
(v̄(i)/w̄(i))]−1Ê

(i)
K [h(θ)]∑K

i=1[V̂ ar
(i)
(v̄(i)/w̄(i))]−1

. (1.6)

The gain in efficiency by combining the chains can be measured by comparing the

mean-squared error (MSE) of the estimates. The estimated MSE is computed by using

the Monte Carlo samples to evaluate the function h, and consider the ratio of MSEs

when using all chains (1.6) to using the final chain only (1.5), that is, M̂SEall/M̂SEK .

As an illustration, consider estimating the one-sided posterior probability P (A >
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0.022) in the oscillator model. For this low-dimensional example, the true probability

can be computed by a numerical integration. We find M̂SEall/M̂SEK = 0.57.

1.7 Interpolating the posterior

One drawback of the scheme is the continued reliance on the ODE numerical

solver at each iteration to produce the posterior value for sampled parameters. This

step becomes increasingly slow for more complicated models where many samples are

required for MCMC convergence, and for stiff ODE systems where adaptive step-size

numerical solvers face slow convergence issues of their own. The next goal is to reduce

the reliance on the numerical solver, and we pursue an interpolation approach.

The idea is to reuse numerical solutions that have been computed for Monte Carlo

samples. By looking at the form of the log-posterior of the i-th chain log p(i)(θ), the

term that depends on the numerical solver is 1
2(σ2+ϵ2)

∑N
i=1

∑n
j=1(yi(tj) − x̂i(tj|θ))2.

Let

SS(θ) ≡
K∑
i=1

n∑
j=1

(yi(tj)− x̂i(tj|θ))2,

which is not dependent on the values of σ2 or ϵ2. As the sampler runs for a longer

period of time, the value of SS(θ) can be stored each time a numerical solution is

computed, with the goal of covering a wide range of parameter values. Under our

multiple chain setup, this formulation is very useful since the SS values are reusable

across all of the chains.

As more samples accumulate, for a proposal θ∗, we may be able to approximate

the posterior value by interpolating its value based on nearby samples of θ that had
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numerical solutions computed. This step must be much faster than the numerical so-

lution. Thus, while splines or basis functions might be used for this purpose, a simple

weighted average of nearby points is appealing. We consider a linear interpolant of

the form

ŜS(θ∗) =

∑
j wjSS(θj)∑

j wj

,

where the sum runs over a set of θj in the neighborhood of θ∗.

1.7.1 Choosing the interpolation neighborhood

The choice of the set of θj is important for the goodness of the interpolation.

In spatial applications, a simple and appealing choice is inverse distance weighting

(IDW), e.g. Lu and Wong (2008). IDW is sensible when it can be assumed that the

contributions of sampled points are inversely related to distance, for the value being

interpolated. It is however unlikely that this assumption will be generally valid in

the ODE parameter space, since the behavior of the system can change rapidly (e.g.

the likelihood plot of the mRNA and protein example). Samples that are somewhat

nearby, but not near enough to capture more rapid changes in SS(θ), will not con-

tribute useful information if used in the interpolation. Restricting consideration to a

very local set of θj would be preferred. The key criterion then becomes the choice of

which specific samples to include.

One promising approach is motivated by computational mathematics. A trian-

gulation of a bounded subset of N -dimensional Euclidean space decomposes the set

into N -simplices, such that the intersection of any two simplices in the decomposition

has dimension less than N , or is empty (Chen and Xu, 2004). This is an extension of
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the usual use of the term triangulations, from planes in ℜ2 to arbitrary dimension. A

commonly-used triangulation, the Delaunay triangulation, as applied to a finite set

of points V , satisfies the property that no vertices in V are inside the circumsphere

of any simplex in the triangulation.

The use of the Delaunay triangulation for functional interpolation purposes has

been studied by Omohundro (1989); the proposed approach to high-dimensional in-

terpolation is to compute a triangulation the input points and use linear interpolation

within each simplex. This leads to a continuous, piece-wise linear interpolated func-

tion within the convex hull of the input points. This is a convenient property for

our ODE estimation context, since only the samples that form the vertices of the

bounding simplex will be given weights in the interpolation.

We briefly mention some of its optimality properties, from an interpolation per-

spective. Omohundro (1989) shows that if the second derivative is bounded, the

maximum error possible with the Delaunay triangulation is less than with any other

triangulation. Chen and Xu (2004) show that an optimal Delaunay triangulation, in

the sense of minimizing interpolation error, exists for any given convex continuous

function. While this optimal triangulation can be difficult to compute, a bounding

Delaunay simplex suitable for the interpolation of a new sample point can be deter-

mined by local criterion in a computationally efficient manner (Omohundro, 1989).

1.7.2 Sampling scheme with interpolation

We now describe how interpolation of the posterior can be incorporated into the

ODE parameter estimation problem. As the first sampling chain is started, numerical
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solutions for sampled θ are computed, and the corresponding SS(θ) are stored. This

continues until a reasonable set of samples have been obtained. Then, for subsequent

proposals of new θ∗, we attempt compute the local bounding simplex and its corre-

sponding interpolated value if triangulation is successful. Triangulation will fail if the

θ∗ is not within the convex hull of the collected samples; in this case, the numerical

solution of θ∗ should be computed, and SS(θ∗) added to the list.

If an interpolated value ŜS(θ∗) exists, a decision must be made to accept or reject

it for use in the computation of the Metropolis ratio. This decision should depend on

the estimated interpolation error and the degree to which the SS function is chang-

ing. To estimate this interpolation uncertainty, we take a cross-validation approach.

Discard the N points used for the interpolated value, and compute a new simplex

using the next set of nearest points, to give ŜS(θ∗)CV . The interpolation uncertainty

translates into uncertainty in the resulting Metropolis ratio used to accept or reject θ∗.

Intuitively, the allowable error in the Metropolis ratio must be small enough to avoid

noticeable impacts on the stationary distribution. Thus, if ŜS(θ∗)CV ≈ ŜS(θ∗), the

corresponding approximate Metropolis ratio can be applied for the acceptance or re-

jection of θ∗. Otherwise, we compute the numerical solution for θ∗ and add SS(θ∗) to

our list. Note that relative to the computational cost of fully evaluating the numerical

solution, the overhead of this extra step is low.

The possible error in the Metropolis ratio can be approximated via

∆MH ≡ 1

2(σ̂2 + ϵ2)

∣∣∣ŜS(θ∗)− ŜS(θ∗)CV

∣∣∣ ,
where the current Monte Carlo estimate of the value of the noise σ2 is substituted,
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and our heuristical guideline is to use the interpolation if ∆MH < 0.1, and compute

a new numerical solution otherwise.

As before, samples for the first chain are collected in this manner, providing the

approximate empirical distribution p̂(1)(θ). Similarly, the next chain begins with a

draw from p̂(1)(θ). Then, for the local M-H update, a list of values for SS(θ) is already

available from the first chain. These values can immediately be used for interpolation

as the second chain begins. While we expect some interpolations to be successful in

this second chain by using these values, it is likely that further numerical solutions will

be required. This is because the second chain has a rougher posterior surface with a

smaller ϵ2. Therefore, changes in p(2)(θ) will be more pronounced for the same change

in SS(θ). As a result, some regions of the parameter space will now require additional

numerical solutions to satisfy the above heuristic. This is intuitively sensible, as we

would like a finer and more precise estimate of the regions of the posterior that are

close to the modes. The same logic applies to subsequent chains.

The sampling scheme with interpolation can be formalized as follows.

A multiple-chain scheme with interpolation

for sampling ODE parameter posteriors

Let p(i)(θ) ≡ p(θ, σ2|Y, ϵi), where the sequence of ϵi satisfy ϵ1 > ϵ2 > . . . > ϵK = 0

Choose an initial value θ
(1)
0 .

For m = 1, 2, . . .

propose θ∗m as a draw from p(1)(θ)

if m < M , the number of initial numerical solutions to collect
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compute the numerical solution for θ∗m and store SS(θ∗m)

otherwise

compute the bounding simplex of θ∗m

if bounding simplex does not exist

compute the numerical solution for θ∗m and store SS(θ∗m)

else compute ŜS(θ∗m)CV and ŜS(θ∗m)

if ∆MH > 0.1 compute the numerical solution for θ∗m and store SS(θ∗m)

update θ
(1)
m−1 to θ(1)m according to Metropolis ratio

(ratio based on ŜS(θ∗m) if interpolation successful, else SS(θ∗m) )

if m > burn-in

save θ(1)m as sample for construction of empirical distribution p̂(1)(θ)

For i = 2, . . . , K

draw θ
(i)
0 uniformly from p̂(i−1)(θ)

For m = 1, 2, . . .

with probability 1− p, propose θ∗m as a draw from p(iS)(θ)

compute the bounding simplex of θ∗m

if bounding simplex does not exist

compute the numerical solution for θ∗m and store SS(θ∗m)

else compute ŜS(θ∗m)CV and ŜS(θ∗m)

if ∆MH > 0.1 compute the numerical solution and store SS(θ∗m)

update θ
(i)
m−1 to θ(i)m according to Metropolis ratio
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with probability p, draw a proposal θ∗ uniformly from p̂(i−1)(θ)

let θ(i)m = θ∗ with probability min

(
1,
p(i)(θ∗)p(i−1)(θ

(i)
m )

p(i)(θ
(i)
m )p(i−1)(θ∗)

)

let θ(i)m = θ
(i)
m−1 otherwise

if m > burn-in

save θ(i)m as sample for construction of empirical distribution p̂(i)(θ)

1.7.3 Example

As an illustration of this methodology, again consider the simulated mRNA/protein

data in section 1.1.1. We take M = 50, the number of initial numerical solutions to

collect before attempting interpolation. As a benchmark, a normal Metropolis sam-

pler with numerical solvers takes around 1260 sec for 10,000 iterations. We ran six

chains with this scheme, and the results are summarized in Table 1.3. The overall

fraction of ODE solutions required is in the range of 10−20% for this data. Note that

as anticipated, subsequent chains do require additional ODE solutions, to interpolate

more finely in important regions of the posterior. The overall time savings is around

4-fold; the overhead of computing local interpolations is empirically justifiable.

It is important that the posterior draws from the interpolated distribution remain

faithful to the original posterior. This is illustrated in Figure 1.7.3. The top panel

shows the histograms of the posterior draws of the parameters A and B under the

original and interpolation schemes; they are virtually indistinguishable. To visually

see the effect of interpolation, the difference between the true posterior and inter-

polated posterior for the final ϵ = 0 chain is shown in the bottom panel. We note
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that most of the error occurs in regions that are further away from the parameter

estimates. The interpolation is quite accurate in the regions of interest, as a result of

the heuristic Metropolis ratio criterion.

Table 1.3: Performance of multiple-chain scheme with interpolation, for the
mRNA/protein levels model.

Number of ODE Cumulative Cross-move
ϵ2 Iterations evaluations ODE evaluations Time (sec) acceptance
50 10000 1297 1297 257.6 N/A
8 10000 1293 2590 261.4 0.269
1 10000 1546 4136 292.2 0.220

0.1 10000 1907 6043 328.3 0.174
0.02 10000 1286 7329 261.9 0.342

0 10000 1323 8652 267.3 0.575

1.8 Conclusions and future directions

We have proposed a multiple-chain sampling scheme for performing Bayesian in-

ference in parameter estimation problems of ODE models. The scheme assumes that

observed data are noise-contaminated and recorded at discrete time points. A latent

variable is introduced to control a level of artificial noise in the system, designed such

that chains can borrow information from the previous chain to improve convergence.

Only minor adaptations are required when certain system components are missing.

The multiple-chain scheme helps to overcome the rough posteriors encountered in

dynamic models, and can be more efficient sampler than an application of parallel

tempering. Samples from chains can be combined to produce more efficient estimates

(with lower MSE) for quantities of interest.

Next, we introduced interpolation methods to reduce the frequency at which nu-
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Figure 1.6: Comparison of original and interpolated sampling schemes, for the
mRNA/protein levels model.
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merical solutions of the ODE are required. We used results from computational

mathematics to design our approach. The method suggested works well with the

multiple-chain setup, and naturally leads to finer interpolation in posterior regions

of greater significance. We were able to maintain accurate inference by carefully

selecting appropriate heuristics.

The work presented in this chapter present a number of possible directions for

future research. In one direction, we might further reduce the use of the numerical

solver by incorporating sensitivity analysis of ODEs, a concept common in applica-

tions of dynamic systems and the applied mathematics literature. Sensitivities of the

ODE solution to perturbations in parameters are often computed to gauge the stabil-

ity of the system. From a Monte Carlo sampling point of view, this information can

be used in the context of evaluating the smoothness of the posterior and providing

further guidance to sampling effort. In a second direction, we would like to scale up

the method to work for much larger systems, such as encountered in systems biology.

This direction would pose additional computational challenges to be tackled.
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Chapter 2

A Statistical Framework for

Protein Structure Refinement

The prediction of three-dimensional structure of proteins from their amino acid

sequence has been of great interest in computational biology, since the discovery that

sequence is generally sufficient for structure prediction (Anfinsen et al., 1973). The

determination of structure by experimental methods has been attained for many pro-

teins using the techniques of X-ray crystallography and nuclear magnetic resonance;

at the same time this process is time-consuming, and not always successful as some

proteins are either difficult to crystallize, or fail to be crystallized (Slabinski et al.,

2007). In applications such as protein and enzyme design where a chosen three-

dimensional structure is required, there are often too many candidate sequences for

experimental determination to be feasible, and computational alternatives must be

used (Kuhlman et al., 2003). There has thus been great interest in the bioinformatics

community in the development of protein folding algorithms to predict structure from
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sequence, e.g. see Kryshtafovych et al. (2005) and the groups mentioned therein. In

this chapter, we describe statistical approaches to tackle some of the computational

challenges arising from the protein folding problem, and construct a system to refine

candidate structures.

2.1 Introduction to refinement

Given an amino acid sequence for a new protein of interest, construction of a

structure prediction often begins with comparative (or homology) modeling (Mart́ı-

Renom et al., 2000). This is a procedure that aligns the new sequence with sequences

of proteins of known structure (templates); on the basis of sequence similarity with

templates, a three-dimensional structure is built. This procedure is based on the

assumption that small changes in sequence will generally lead to only small changes in

structure. The database of known structures that can be used as templates continues

to grow as more proteins are determined experimentally, and these structures are

available in the Protein Data Bank (PDB) (Berman et al., 2000). With the availability

of more data, schemes for template detection have also grown in sophistication and

power. One powerful method for template detection is HHPred (Söding et al., 2005),

that finds remote homologies via a pairwise comparison of profile hidden Markov

models. The resulting sequence alignment can be used as input for comparative

modeling software such as MODELLER (Eswar et al., 2006), which builds a three

dimensional structure from the input alignment.

These advances have consequently reduced the need to build structure predictions

ab initio from the sequence, which was the original goal of packages such as ROSETTA
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(Simons et al., 1999a). The goal of ab initio protein folding is to predict structure

from sequence alone, without the aid of comparative modeling; this is most often

useful when matching templates cannot be found. In these circumstances, the search

for possible conformations is usually guided by an energy function and a sampling

algorithm (Baker and Sali, 2001), with the goal of locating the global energy minimum

for the sequence.

Both the construction of an energy function and the choice of sampling algorithm

pose formidable computational challenges. The purpose of the energy function is

to guide conformational sampling and optimization towards the truth, and the ideal

energy landscape would be a “funnel” with the true conformation at the bottom

of a deep energy well (Wolynes, 2005); it must also be able to distinguish misfolded

structures from correct folds (Simons et al., 1999b). Many energy functions have been

designed for use in protein folding that incorporate a combination of physics-based

terms (such as Van der Waals forces) and statistically-learned terms, e.g. Simons et al.

(1999a); Fujitsuka et al. (2004); Zhang et al. (2004); Shen and Sali (2006); Zhang and

Zhang (2010); Liang et al. (2011); Zhou and Zhou (2002). These functions, while

useful for various applications, still possess many inaccuracies when evaluated over

sets of decoy structures, e.g. Tsai et al. (2003).

The search for a global energy optimum in protein folding, even in the case of

lattice models, is NP-complete (Berger and Leighton, 1998); the space of conforma-

tions with a Cartesian coordinate representation for individual atoms is much larger.

An efficient sampling algorithm is therefore crucial, and again many strategies have

been proposed, e.g. Kim et al. (2009); Zhang et al. (2002); Bruccoleri and Karplus
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(1990). Even with an accurate energy function, the true state of a protein may never

be sampled (Kim et al., 2009).

The energy function and sampling algorithm continue to have an important role

in the context of template-based modeling. Since the structure built from alignment

is not expected to be perfect, a refinement step usually ensues, e.g. Roy et al. (2010),

where the goal is to generate an improvement upon the template-based structure.

Regions in the protein that lack template matches in particular will require additional

sampling effort, e.g. Jacobson et al. (2004). Thus, while sampling and energy might

not be applied as the only ingredients for the structure prediction process, they are

definitely necessary for any refinement procedure on a given structural template. The

refinement problem has been shown to be difficult in practice, and it is difficult to

guarantee improvements in the structure (MacCallum et al., 2011).

Our goal is to develop approaches to the refinement problem that accounts for

the aforementioned statistical challenges. In this chapter, we develop a selection

procedure for predictions, and an overall scheme for sampling conformations based

on Monte Carlo optimization. The sampling of segments within a protein that are

not well modeled by matching templates is known as loop sampling (Lee et al., 2010),

and will be the focus of the next chapter.

2.2 Constructions of energy functions

Most energy functions used for protein folding involve a linear combination of

component terms. This idea originates in the work of Simons et al. (1999a); we

briefly review this general approach. Ideally, an energy function should be useful for
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guidance during Monte Carlo sampling of conformations, and the best prediction is

the structure with the lowest energy. The authors identified a number of compo-

nent energy terms that contribute to the distinguishing of good folds from misfolded

structures, for any given amino acid sequence; these terms were later expanded and

updated to provide the scoring function used in the ROSETTA package (Rohl et al.,

2004a).

Each component term describes one aspect of a protein structure that may dif-

fer between native-like structures and misfolds. Some of the key components are:

steric repulsion (VDW forces), torsion angle preferences, hydrogen bonding, solva-

tion, atom-atom interactions, and side chain torsion angles. Van der Waals forces

are physics-based and can be expressed with this functional form (based on the 12-6

Lennard Jones approximation),

EV DW =
∑
i>j

[(
rij
dij

)12

− 2

(
rij
dij

)6
]
eij

where i, j are atom indices, and dij is the separation between the atoms. The sum

runs over all atom pairs in the structure. The eij (geometric mean of atom well

depths) and rij (VDW radii) have experimentally determined values. In contrast,

many other components are often knowledge-based, that is, estimated from statistics

in the PDB. For example, the term for main chain torsion angle preferences in the

ROSETTA package is expressed as

Erama = −
∑
i

logP (ϕi, ψi|aai, ssi), (2.1)
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where empirical densities for torsion angle pairs (ϕi, ψi), conditioned on amino acid

type and secondary structure type, have been learned from the PDB, and the sum

runs over all amino acids i in the sequence. For instance in these two terms, we expect

that native-like structures would tend to have low VDW energies and have a profile

of torsion angles that is realistic and similar to known proteins. These terms could

thus help distinguish possibly viable structures from unrealistic ones. Similar logic

applies to other component energy terms that have been developed, e.g. the popular

DFIRE potential (Zhou and Zhou, 2002). Overall, the goal is that the complete

energy function contains all the characteristics necessary for this classification task.

A question of interest then arises, when considering the manner in which informa-

tion in the various energy components should be pooled together. The usual method

is to sum them with linear weights. Simons et al. (1999a) describe the rationale as

follows, to compute the probability density of a given structure based on a set of k

energy components which we shall denote E1, . . . , Ek. Let Etot be the total energy

of the structure; then its density in the corresponding Boltzmann distribution (dis-

regarding temperature) is exp(−Etot). The other energy terms can be expressed as

a density in similar fashion. Suppose the terms yield independent density functions,

then they can be multiplied to produce the density exp(−Etot),

exp(−Etot) =
k∏

i=1

exp(−Ei),

or equivalently, Etot =
∑k

i=1Ei. The authors argue that the component densities

provide some overlapping information to some extent, violating independence. Addi-

tionally, there can be overcounting or lack of independence even within an individual
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term; for example, in the statistical torsion angle term (2.1), the (ϕi, ψi) of adjacent

amino acids are not truly independent. To approach these issues, the authors propose

instead the expression

exp(−Etot) =
k∏

i=1

[exp(−Ei)]
wi ,

a logarithmic pooling of the density functions, with weights wi that must be es-

timated. This yields the linear form of composite energy functions usually seen,

Etot =
∑k

i=1wiEi.

Estimation of the weights wi can proceed in a number of ways. A commonly-used

approach is the use of collections of “decoys”. This can be used for weight-fitting as in

Simons et al. (1999a), but also applicable for fitting parameters for energy functions

in general, see for example Chuang et al. (2008); Liang et al. (2011). For a given

protein with known structure, decoys are computationally generated incorrect folds

of the same amino acid sequence. Since the space of possible incorrect structures is so

large, good decoys should have favorable energy in at least some criteria, e.g. low Van

der Waals forces indicating that no steric clash has occurred. To generate a set for

training purposes, a number of proteins are usually chosen and decoys are generated

for each (a few hundred to thousands of decoys, per protein). In the case of Simons

et al. (1999a), approximately 30,000 decoys were generated for each of 21 proteins.

Linear regressions were then fit with the k energy terms as predictors, and where the

response variable is a proxy for how close a given decoy is to the native structure.

The weights were then assigned to the estimated regression coefficients corresponding

to each term.

Other types of objective functions based on decoys could be used. For example,
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Liang et al. (2011) minimize an objective function of the form

∑
training

∑
decoys exp{−Edecoy}

exp{−Enative}+
∑

decoys exp{−Edecoy}
,

which accomplishes a similar purpose of training the energy function to separate

natives from decoys.

Alternatively, energy parameters such as weights could be fitted by maximum

likelihood on a set of native structures, as briefly mentioned by Simons et al. (1999a).

Another approach that does not use decoys, instead defines a reference state relative

to the native structure, as in DFIRE (Zhou and Zhou, 2002).

Ideally, constructed energy functions should have sufficient accuracy for use in

both the sampling conformations, as well as ranking the goodness of structures when

a list of decoys is provided. We next illustrate some of the deficiencies of energy

functions and propose solutions.

2.3 Structure ranking

In this section, the goal is to select the correct native conformation among a

collection of decoys. We use data from the biannual CASP experiment (Moult et al.,

2009) for evaluation. It possesses desirable properties as a decoy set; the decoys are

structure predictions generated by participating groups, where the groups are blinded.

The predictions have native-like properties that can be difficult for a trained energy

function to distinguish from the true structure, and thus poses a challenging test for

an energy function to rank them correctly.

39



Chapter 2: A Statistical Framework for Protein Structure Refinement

2.3.1 Construction of ranking function

For a fixed set of energy terms, we would like to develop a composite energy

total that has a high probability of correctly identifying the native. We use structure

predictions from the 8th CASP experiment and a standard decoy set in Tsai et al.

(2003) as a training set. From the CASP8 set, we have 120 proteins with roughly 80

groups submitting predictions for each. The Tsai decoy set is built on 62 proteins,

with 100 decoys each that score well using the default Rosetta energy terms, plus

another 20 decoys that are randomly selected configurations. Structures from the 9th

CASP experiments will be used to test the approach. The energy terms considered

were the 18 components of the full-atom ROSETTA scoring function (Rohl et al.,

2004a).

We note the intuition provided for the use of a linear weights on energy terms

is based on uncertainty about the degree to which information in the terms overlap

or are dependent. The logarithmic pooling of the densities is one possible ad-hoc

method to combine them. For ranking purposes, this pooling function might be

improved by relaxing the assumptions of linearity and the absence of interactions.

Generalized additive models (GAMs), first introduced in Hastie and Tibshirani (1986)

are a powerful tool that could be applied here, which we briefly review.

The main idea of using a GAM is to move away from a linear function, and model

the dependence of a response Y on predictors X1, . . . , Xk in a more non-parametric

fashion. The usual GLM attempts to fit

g(E(Y )) = β0 +
k∑

i=1

βiXi + error,
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for regression coefficients β and link function g, is extended is extended in the GAM

context to

g(E(Y )) = s0 +
k∑

i=1

si(Xi) + error,

where the si are unspecified smooth functions to be estimated. In the original im-

plementation, the form of the si’s was a simple scatterplot smoother; though as

computational power has increased, the use of kernel or spline smoothers has become

more popular. As would be expected, a greater amount of data required to fit a GAM

adequately, due to the increase in degrees of freedom (Wood, 2006a). Fitting the si’s

typically requires the addition of some form of penalty to the likelihood to prevent

overfitting, with the penalty based on a measure of degree of wiggliness in the smooth

function.

In the original design of GAMs, there was no facility to handle the inclusion of

interaction terms that were also non-parametric smooths. The fitting of multivariate

smooth terms was later developed in Wood (2006b), which proposed a method to

construct low-rank tensor product smooths, that could accommodate varying degrees

of wiggliness in the univariate smooths. Suppose a construction of a bivariate smooth

on covariates X1, X2 is required, and that their individual smooths can be written

s1(x1) =

n1∑
i=1

αiai(x1), s2(x2) =

n2∑
j=1

βibi(x2),

for sets of basis functions {ai} and {bj} that are of low rank. Using the basis for x2,
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the αi can be allowed to also vary smoothly with x2, i.e.

αi(x2) =

n2∑
j=1

βijbj(x2),

which leads to a natural expression for the joint smooth, namely

s1,2(x1, x2) =

n1∑
i=1

n2∑
j=1

βijai(x1)bj(x2).

Similarly, the penalties different degrees of wiggliness in the marginals are combined

into a wiggliness measure for the joint smooth, weighted to allow the penalty to be

invariant to covariate scaling.

In this context it is natural to consider, as an alternative to a linearly weighted

total energy, a GAM of the form

EGAM =
k∑

i=1

si(Ei) +
∑

some i,j

si,j(Ei, Ej)

where for the pairwise terms, the most important interactions are selected. Applica-

tion to the decoy training set requires a few considerations. First, a response variable

must be defined. While in Simons et al. (1999a) the definitions used were cutoffs

in root-mean-squared distance (RMSD) of the decoy from the native structure, its

shortcomings as a metric for whole-protein similarity have been criticized in favor of

methods that give more credit to local correctness, such as the Global Distance Test

(GDT) (Zemla, 2003). GDT searches for the longest continuous segments within the

protein that can be aligned with the true structure within a given RMSD cutoff. This
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is the metric we employ here. Second, there should be a protein-specific adjustment,

to account for the differences in the average quality of the generated decoys over the

different proteins. Third, there must be sufficient data to prevent overfitting. While

this aspect might not be critical for structure selection, overfitting could be detrimen-

tal if the function is used for sampling, as explored later. It is not difficult to generate

more decoys for each protein; the challenge is to generate representative decoys that

cover important regions of the vast conformational space.

Letting there beM distinct proteins, and NM decoys for each, we fit the following

model based on these considerations,

GDTm,n =
k∑

i=1

si(ei,m,n) +
∑

some i,j

si,j(ei,m,n, ej,m,n) + βm + ϵm,n, (2.2)

for m = 1, . . . ,M and n = 1, . . . , Nm, where βm is the protein-specific effect and ϵ is

the error term. In the fitting procedure, we begin with the individual si’s, and add

interaction terms in a stepwise fashion using BIC as guidance.

2.3.2 Results and discussion

The GAM-based predictor is compared with two linear-based models. The first is

the default weight coefficients in the Rosetta energy function; the second is a set of

re-trained weights with a new linear regression run on the training set. Based on the

three models, each decoy in the test set is scored, and the best scoring structure is

chosen as the prediction. A GAM without interactions is also included for comparsion.

Of primary interest is the frequency at which the native structure is ranked first; also

of interest is the overall (average) ranking of the native structures. The results are
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shown in Table 2.1.

Table 2.1: Ranking results on CASP9 test set.
Rosetta: Default weights in Rosetta energy function;
Regression: Refitted weights based on training set;
GAM+int.: GAM with stepwise-selected interactions;
GAM no int.: GAM with no interactions.

Protein ID Rosetta Regression GAM+int GAM no int.

515 6 5 1 4
516 3 10 2 5
517 4 5 1 3
518 3 3 1 3
520 9 4 1 6
521 6 23 3 23
522 6 18 9 2
523 6 5 1 1
524 3 1 1 2
525 4 2 1 1
526 3 1 2 2
527 9 4 1 4
528 3 2 1 4
529 2 2 3 3
530 5 8 2 2
531 12 3 1 1
532 3 6 3 5
533 5 9 1 6
534 2 3 1 3
536 6 9 1 3
537 1 2 3 3
538 7 14 3 3
539 8 4 1 2
540 6 1 1 1
541 7 27 1 2
542 4 2 1 3
543 3 2 3 3
544 7 7 1 1
545 7 6 1 2
547 5 2 2 4
548 10 3 1 2
549 10 46 37 45
550 3 2 1 3
551 12 4 1 1
552 5 4 1 2
553 8 4 1 2
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Table 2.1: (continued)

Protein ID Rosetta Regression GAM+int GAM no int.

555 8 4 1 2
557 6 25 1 2
558 2 1 1 2
559 6 12 1 4
560 8 39 24 21
561 10 3 1 2
562 9 7 1 1
563 5 2 1 4
564 7 6 1 3
565 5 4 1 5
566 5 2 1 4
567 36 69 25 68
568 5 1 1 1
569 6 5 1 1
570 6 22 5 13
571 4 2 2 3
572 6 28 12 19
573 5 6 5 5
574 6 1 1 1
575 4 14 46 15
576 8 3 1 3
578 7 3 1 2
579 7 5 1 1
580 5 3 2 1
581 6 1 1 1
582 3 1 1 1
584 6 16 1 15
585 6 4 1 5
586 6 8 9 4
588 5 5 2 5
589 4 8 2 4
590 7 52 3 13
591 4 4 2 4
592 7 9 1 5
593 5 2 1 2
594 6 5 1 3
596 7 10 1 9
597 5 23 1 14
598 7 1 1 2
599 5 4 4 5
600 7 58 8 58
601 5 5 1 4
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Table 2.1: (continued)

Protein ID Rosetta Regression GAM+int GAM no int.

602 17 25 6 28
603 5 7 1 4
604 4 2 1 2
605 14 27 33 24
606 5 7 1 2
607 3 7 1 3
608 4 6 1 4
609 4 1 1 3
610 5 4 1 2
611 7 8 1 8
612 8 4 1 8
613 6 4 1 4
614 6 1 1 1
615 7 23 2 14
616 12 10 1 8
617 9 19 10 18
618 6 16 2 9
619 6 16 1 3
620 6 8 1 7
621 6 1 1 2
622 6 3 1 1
623 5 7 1 3
624 5 5 1 2
625 4 11 1 4
626 3 25 1 7
627 5 3 3 7
628 4 1 1 2
629 5 18 33 14
630 6 4 1 1
632 10 11 1 7
634 6 19 1 10
635 5 32 1 10
636 4 13 4 5
637 6 31 1 28
638 6 22 23 10
639 8 12 1 1
640 5 31 2 34
641 4 3 1 2
643 6 19 7 21

Times native ranked first 1 13 79 18
Average rank of native 6.2 10.3 3.6 7.0
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A few characteristics are worth noting. The Rosetta weights are built on different

training data, which seem to be conservative in the sense of being optimal for the av-

erage ranking of natives: the native structure is rarely ranked first, but on average it

is one of the best-scoring structures. A refitted linear regression on the training data

is comparably worse, even though the native is identified more frequently; this illus-

trates sensitivity to the training set. The GAM, even without interactions, performs

better than linear regression in both respects. It is comparable to default Rosetta

weights for average ranking, but with higher variance. On the other hand, the GAM

with selected interactions provides a substantial increase in the performance in both

metrics, compared to the other three predictors.

This illustrates that there is indeed substantial overlap between energy compo-

nents, which can be accounted for by a nonparametric smoother on interaction terms.

This approach seems promising for the purpose of structure selection, after an appro-

priate sampling of the conformational space has been undertaken.

In passing, we note that the comparison described here computes energies for each

decoy independently, and the selection is based a simple ranking of the decoy struc-

ture scores. It has been noted in the literature that leveraging similarities between

competing structures (known as ensemble scoring) can further improve the identifi-

cation of the best model among alternatives (Benkert et al., 2008). However, such an

approach is unlikely to be helpful when there is a high degree of dependence in the

decoy set. This dependence would be present in applications where the predictions

are generated by a single algorithm, such as the type of Monte Carlo simulation to be

considered in our work. This contrasts with overall ensembles in CASP experiments
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where groups independently generate predictions.

2.4 Design of local moves

The top-level goal is Monte Carlo optimization of the energy of a template-based

structure. A key ingredient is the generation of useful proposals during the simulation.

These will come in the form of small perturbations to the structure at each step,

followed by an evaluation of the energy function. Terms in any useful energy function

will include summation over all pairwise atom distances (e.g. VDW) in the protein;

thus, the computational bottleneck will be the energy evaluation if the entire-protein

energy of structure proposals are required at each step. Therefore, effective proposals

that only move small portions of the protein at a time are preferred; such proposals

would require a partial energy calculation, namely that of the interactions between

the modified region and the rest of the protein.

To this end, we have developed FRESS (Fragment Re-growth by Energy-guided

Sequential Sampling), a sampling method for fragments within a protein with the two

ends fixed. The method provides alternative conformations for backbone segments

within the protein. A detailed description of FRESS is the subject of the next chapter.

A fragment sampler is a useful tool for refining loop regions of a protein, e.g.

Jacobson et al. (2004), and we use FRESS as the main proposal mechanism in

Monte Carlo simulations. When starting from a template-based model, sampling

effort should be focused on regions with low template confidence. At each simula-

tion step, a fragment proposal is evaluated with the energy function to determine

acceptance or rejection. It is possible at this stage that closed fragment proposals
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have minor steric clashes with the rest of the protein, but are otherwise good samples.

Simply discarding the proposal would be an inefficient use of computational resources.

We perform a quick check if steric problems in fragment proposals can be resolved,

by adapting a version of the torsional relaxation technique, proposed by Wong et al.

(1998).

In torsional relaxation, the goal is make small rotations to a torsion angle to

reduce energy while minimizing the effect of the rotation to downstream residues.

The rotation in one torsion angle is propagated by a series adjustments to neighboring

torsion angles to gradually close the distance gap induced by the rotation. After the

distance gap has been closed, the positions of residues further down the chain are no

longer affected by the initial rotation. This method has been shown to be effective in

stabilizing energy wells, without much atom movement in Cartesian coordinates. In

the context of relaxing fragment proposals, we make the following adaptation.

Torsional relaxation for fragment proposals

Use FRESS to generate a closed fragment proposal, for residues [l0, l0 + l]

Relaxation loop:

For i = l0, l0 + 1, . . . , l0 + l − 3

Rotate ψi by 0.1◦ clockwise

Torsion relax this rotation

if torsion relax completes by residue r < l0 + l

compute backbone energy change ∆Etrial on fragment [i, r]
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if ∆Etrial < 0 accept this relaxation

if torsion relax failed to complete or ∆Etrial > 0

Rotate ψi by 0.1◦ counterclockwise

Torsion relax this rotation

if torsion relax completes by residue r < l0 + l

compute ∆Etrial on fragment [i, r]

if ∆Etrial < 0 accept this relaxation

if at least one relaxation accepted, goto Relaxation loop

This procedure is fast to execute relative to the FRESS sampling step, and helps

to relieve steric strains without much position movement while making the fragment

proposal to be favorable energetically.

Finally, a simple rotation of torsional angles is also considered as a local proposal,

when the region is part an extended chain. Membership in an extended chain is

determined by counting the number of residues that are within an 8 A radius.

The possible proposals for backbone atoms have now been described, and we turn

our attention to side chains.

2.5 Optimization for side chains

An important consideration in all-atom protein folding is the prediction of side

chains (Krivov et al., 2009). Thus, while FRESS and relaxation produces backbone
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atom proposals, the side chains of the corresponding residues will also require op-

timization. The goal is to find an optimal side chain placement with the backbone

fixed.

Side-chain packing has been a studied subject, e.g. Liang et al. (2011); Krivov

et al. (2009); Canutescu et al. (2003); Xiang and Honig (2001); Tuffery et al. (1991).

For this procedure, a side-chain energy function is required, to evaluate the impact of

side-chain to side-chain and side-chain to backbone interactions. Liang et al. (2011)

use the following functional form, derived from series expansions, to represent the

energy of the j-th side chain dihedral angle of amino acid type i, when the angle in

the configuration is α:

E(α) = ti,j1 cosα+ ti,j2 sinα + ti,j3 cos 2α + ti,j4 sin 2α + ti,j5 cos 3α + ti,j6 sin 3α,

where the set of parameters {t} are optimized to distinguish native side chain confor-

mations from decoys, using an objective function of the form (2.2). Additionally, the

following form is used to represent the energy of the general atom-atom interaction

between an atom of type i and an item of type j when they are separated by distance

d:

E(d) = ai,j1 d
−2 + ai,j2 d

−4 + ai,j3 d
−6 + ai,j4 d

−8,

for the set of parameters {a}. These functional forms were shown to be flexible enough

to capture angle and atom distance preferences, and provided good performance for

side-chain prediction when a native backbone was given. A prediction is considered

correct when the side chain dihedral angles are within 40◦ of the native value.
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One appealing aspect of this approach is its amenability to optimization for con-

tinuous functions, and its use is not restricted to precomputed rotamer positions

(Dunbrack Jr and Karplus, 1993). For use in FRESS fragment proposals, we perform

a side chain optimization step after torsional relaxation. In addition to the current

side chain angles, three starting side chain positions are sampled for each residue in

the fragment from empirical side chain dihedral densities. Each of these sets forms an

initial value for side chain energy minimization in Cartesian coordinates. Since the

joint side-chain angle space for longer fragments will be of high dimension, the min-

imization is performed sequentially, by optimizing one the side chain of one residue

at a time using the Levenberg-Marquardt algorithm (Moré, 1978). This is looped

over the fragment until convergence, for each starting set of values. We then select

the lowest energy side chains found. The goal is not to locate the global side-chain

energy minimum for the fragment at this stage; this would not be computationally

feasible if repeated over every backbone fragment proposal. However, our heuristic

will generate side chains of sufficient quality to stabilize the energy of the fragment

proposal.

2.6 Energy functions for sampling

We return to a discussion of energy functions, now in the context of sampling.

With the use of the composite FRESS, relaxation, and side chain optimization method

to generate complete fragment samples as local moves for a Monte Carlo simulation,

it remains to specify the Boltzmann density under which the proposals should be

evaluated.
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The GAM approach that significantly improved structure ranking and selection

might seem to also provide a basis for a pseudo-energy function for evaluating Monte

Carlo proposals. However, we found that energy functions for sampling and selection

must not necessarily be identical. Usage of the GAM-score as the pseudo-energy

function for sampling failed to produce acceptable results, with the sampler being led

astray by extraneous structures that were not physically sensible. This continued to

be a problem after sampled decoys were added to training set and GAMs re-fitted

in an iterative fashion. This provides empirical evidence that the conformational

space is indeed too large for sampling on an artificial overfitted density to succeed; in

every instance we were able to find structures that scored well on the complex model

that were in fact poor conformations. In theory, this overfitting problem might be

eliminated if representatives from the entire space were scored; this is not tractable

in practice.

We therefore opt to use a standard linear combination of energy terms for a

sampling energy function. The novelty in our heuristic approach is to account for the

uncertainty in the coefficients of the terms, during sampling. Our objective function

when training over a decoy set is to optimize the set of weights wi to maximize

M∑
j=1

Cor

(
k∑

i=1

wiEij, GDTj

)
,

that is, maximizing the average correlation of the linear combination with GDT, over

the M unique training proteins. The maximal correlation is to encourage a funnel-

type shape, such that structure scores improve as we sample closer to the truth.

Weights were constrained to be positive, to preserve the ordering of energy values at
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Figure 2.1: Cross validation on linear weights on 13 individual terms, for the design
of sampling energy function.

the level of individual terms. The sidechain-sidechain and sidechain-backbone compo-

nents of the DFIRE2 (Yang and Zhou, 2008) pairwise atom term (component 10) was

set to be have a baseline weight of 1, to allow identifiability in the rest of the weights;

this term was important and strongly positive in all replications. To characterize the

uncertainty in the weights, we used a cross-validation approach to create confidence

bands, where for each replicate 20% of the proteins were randomly held back as a

test set. See Figure 2.1 for an illustration. Five of the 13 candidate components

were deemed to be significantly non-zero based on this procedurre. To create sets

of weights to be used in sampling, estimates from six folds of cross-validation were

saved. These weight sets, along with a description of their corresponding terms, are

shown in Table 2.2.

Since any sampling density is artificially imposed on the conformational space, one

heuristic is to draw samples from an ensemble of densities representing the approxi-
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Table 2.2: Weight sets estimated from cross validation. DFIRE2 sidechain and
sidechain-backbone term has reference weight 1.

Description Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
Van der Waals 3.00 2.66 3.21 3.15 3.43 2.58

Hydrogen bonding 0.14 0.02 0.14 0.17 0.22 0.15
Side chain torsion angle 1.04 0.99 1.01 1.03 1.06 1.10

DFIRE2 backbone-backbone 0.71 0.71 0.66 0.74 0.78 0.66

mate energy surface. Some of the local energy wells may overlap among the different

weighting schemes; taken together, we expect a broader coverage of energy wells that

may contain conformations of interest. To achieve this coverage, during sampling

we allocate a fixed number of iterations to spend at each set of weights, and cycle

through the different sets in this manner throughout the Monte Carlo simulation.

This approach inherently assumes that the any particular energy function is not

completely reliable for sampling or selection. There is no longer a clear “minimum

energy” conformation when samples have been drawn from an ensemble of energy

functions. Therefore, our strategy is to save samples periodically, and use a different

metric at the end of the simulation to select the best structure from those sampled.

Based on the empirical success of GAMs for rank structures, this is the approach we

adopt for the final selection.

2.7 Parallel samplers

It has been mentioned before that the conformational space of a protein is ex-

tremely large, even when constrained to refinement applications on template-based

starting structures. Computation is the bottleneck, and it has long been recognized

that some form of parallelization should be employed to locate energy optima faster
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(Zhang et al., 2002) when the computing resources are available. Assuming that each

CPU in the process is responsible for one Monte Carlo simulation thread, the par-

allelization scheme not only should search for candidate conformations individually,

but the threads also should communicate to speed up global convergence to energy

minima.

Parallel tempering is a natural candidate for this purpose, which Zhang et al.

(2002) use as a starting point while recognizing its limitations. Therein, the authors

suggest a more effective energy landscape flattening scheme than vanilla parallel tem-

pering, by applying a nonlinear transformation Ẽ = arcsh(E−E0) for proposals with

raw energy E ≥ E0, where E0 is the raw energy of the current state and arcsh is the

inverse hyperbolic sine function. The intuition of this approach is to further flatten

out the high-energy barriers (i.e. when E >> E0) to improve sampling on the level

of individual chains.

We believe the ideas explored in the development of the equi-energy sampler

(Kou et al., 2006), can potentially provide a more efficient swaps than in parallel

tempering. Draws from a neighboring chain will come from a similar energy level,

and possibly also a different region of the space. Further work by Baragatti et al.

(2012) extends equi-energy moves to the context of parallel tempering, called PTEEM

(Parallel Tempering with Equi-Energy Moves). In our application, we opt for this

approach since it inherits the advantage of equi-energy jumps, and make modifications

so as not to require the pre-specification of energy rings and cutoffs. In particular, the

expected range of possible energies and minimum energy for a given protein would

be very difficult to estimate in advance; yet, that would be a required value for
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implementing the full equi-energy sampler.

We briefly review the PTEEM algorithm, and discuss adaptations made in the

context of our parallelization scheme for Monte Carlo optimization. As in the EE

sampler, a sequence of d + 1 energy levels are chosen, H1 < H2 < · · · < Hd+1 =

∞ with H1 = min(Etot(C)) set to be the global minimum of the energy function

over all conformations C. For N chains being run simultaneously, a sequence of N

temperatures T1 = 1 < T2 < · · · < TN are chosen; the i-th chain is draw samples from

the Boltzmann density πi(C) ∝ exp(−Etot(C)/Ti), i = 1, . . . , N . The conformation

space C is partitioned into energy rings

Dj = {C ∈ C ;Etot(C) ∈ [Hj, Hj+1)} , j = 2, . . . , d

D1 = {C ∈ C ;Etot(C) ∈ (−∞, H2)} .

These are the same rings for all chains, and these rings contain only current states.

The global move is defined as follows: an energy ringDj containing at least two chains

is chosen; two chains within the ring are randomly selected and a swap between them

is proposed.

The choice of energy ladder is not straightforward for proteins, as the energy range

and minimum energy are unknown. Only the energy of the input template structure

would be known. Thus the calibration technique suggested in the PTEEM paper,

which involves running a vanilla MC chain to discover energy levels, would not be

feasible. We instead opt to dynamically set and fine-tune the energy ladder.

First, we suggest that the number of rings d should be related to the number of

chains N . If d = 1, the swaps are reduced to usual parallel tempering moves. If d is
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only slightly smaller than N , when swaps are proposed there may not be many rings

that contain current states for at least two chains. The heuristic we propose is setting

d ≈ N/4, so that on average rings will contain 4 states.

Second, the energy ladder will be fine-tuned as sampling proceeds and we gather

more information on the energy landscape. For ease of implementation, global swap

moves will occur at fixed intervals, with all chains swapping simultaneously when a

global move is requested. Each time this step occurs, the energy rings are updated

by setting a new H1 and Hd, and then geometrically spacing the other energy levels

between them. We use the following heuristics. Since min(Etot(C)) is unknown, we

set H1 to be the minimum energy of all sampled structures so far, plus some slack. A

reasonable slack amount is the change in minimum energy found since the last global

swap, if it is negative; this accounts for the overall trajectory of minimum energy over

the simulation. The top energy ring, Hd, can be set at a level that accounts for both

the maximum of the current states, as well as the maximum over all samples. If Hd

is set to the maximum of all samples, it might include too much slack on the upper

end as the simulation generally proceeds downwards in energy, leaving some top rings

empty. As a heuristic we opt to set Hd to be a weighted average of the two maxima,

according to their precision. Details are as follows.

Dynamic adjustment of energy rings for PTEEM

initialize empty vector Eall

do if PTEEM requests a global swap move:
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let Ecur ≡ vector of N current energies

append Ecur to Eall

∆E = min(minEcur −minEall, 0)

wcur =
1

V ar(Ecur)
; wall =

1

V ar(Eall)

H1 = minEall +∆E

Hd =
wcur maxEcur + wall maxEall

wcur + wall

geometrically space H2, . . . , Hd−1 between H1 and Hd

2.8 Refinement in action

Thus far in this chapter, we have described the main tools and statistical con-

siderations for the development a protein structure refinement algorithm. Here, we

summarize the tools and put the pieces together.

Refinement begins by obtaining as input, usually through sequence alignment

tools, an initial three-dimensional structure for the protein of interest. To generate an

improvement on this starting structure, we take the approach of designing an energy

function and Monte Carlo sampling algorithm to search the conformational space.

The energy function used for sampling is a weighted linear combination of component

energy terms, with different sets weights to account for the approximate nature of

any energy calculation and enhance exploration. With the guidance of this energy

function, Monte Carlo simulations are run with local proposal moves. These moves
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involve a combination of FRESS fragment sampling, torsional relaxation, and rotation

of torsion angles. Each proposal move will relocate portions of the protein backbone,

usually resulting in misplaced side chains for the moved residues. We perform a local

side-chain energy minimization on the affected residues, before sending the proposal to

acceptance or rejection via the Metropolis ratio. The regions on which sampling effort

are focuses will be guided by confidence in the structure template, if this information

is available. Typically, a large set of simulation threads will be run simultaneously; to

leverage the parallelization we adopt a version of parallel tempering with equi-energy

moves to improve convergence. Samples are saved frequently, to build a set of possible

structure predictions. Finally, at the end of the simulation, a GAM is used to rank

the set of sampled structures, and the selected prediction is the highest ranking GAM

score among the set.

In Figure 2.2, we see illustrated two examples of successful refinement, by applying

this methodology.

2.9 Conclusions

Protein folding via computation continues to be a challenging problem after decades

of research. In this chapter, we have only scratched the surface of the areas where

more research is needed. We have identified a number of ways in which statistically-

motivated computation can make a useful contribution, and proposed methods to

tackle the protein structure refinement problem.

Many of the our suggestions involve the application of statistical intuition to learn

from data more effectively and to sample more efficiently. One of the caveats when
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dealing with large amounts of protein data and even larger conformational spaces, is

that most proposed methodology will necessarily be heuristical in nature and difficult

to test.

Our preliminary results show that there are areas of promise in these statistics-

based approaches, though much future work awaits.
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Chapter 3

FRESS: A New Algorithm for

Sampling Protein Fragments

An effective fragment closure algorithm is essential for loop modeling and also

very useful in structure prediction and refinement. The statistical challenges of this

problem are threefold. First, fragments of interest can be up to 18 residues or longer,

which necessitates sampling from a high-dimensional space corresponding to the geo-

metric degrees of freedom in the fragment. Secondly, there is a geometric constraint

on fragment samples – they must begin and end at the designated positions (clo-

sure). Thirdly, the sampled fragments need to form favorable interactions with the

remainder of the protein (feasibility) and have low energy. In this chapter we in-

troduce a fragment sampler based on placing residues sequentially using sampling

distributions designed to encourage closure and feasibility. We compared our method

to existing ones such as Cyclic Coordinate Descent, CJSD, SOS, and FALC using a

benchmark dataset for loop modeling. Based on these empirical assessments, we find
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that our sampler is able to generate conformations with both low RMSD from the

native conformation and good steric properties in a computationally efficient manner.

3.1 Introduction

Sampling the conformations of a fragment with its two ends fixed (fragment clo-

sure or fixed-end move) is an important problem in protein structure simulation and

prediction. In loop modeling, conformations of fragments need to be sampled with

other parts of the protein fixed (Fiser et al., 2000). In structure prediction, it can also

be a very effective strategy for sampling protein conformations (Rohl et al., 2004b;

Qian et al., 2007).

Fragment closure seeks to generate plausible spatial positions for the atoms of

the fragment subject to fixed starting and ending points. Sampled fragments should

satisfy two basic requirements. First, its bond lengths and angles must be compatible

with the geometric constraints at its two ends. Second, steric clashes within the

fragment and with other parts of the protein must be avoided, and favorable atomic

interactions with low potential energy should be encouraged.

Designing fixed-end moves for chain polymers has been studied extensively for four

decades (e.g., Go and Scheraga, 1970; de Bakker et al., 2003; Betancourt, 2005; Cahill

et al., 2003; Canutescu and Dunbrack, 2003; Collura et al., 1993; Coutsias et al., 2004;

Cui et al., 2008; Jacobson et al., 2004; Koehl and Delarue, 1995; Lee et al., 2005; Liu

et al., 2000; Lee et al., 2010; Liu et al., 2009; Mandell et al., 2009; Moennigmann and

Floudas, 2005; Noonan et al., 2005; Peng and Yang, 2007; Sellers et al., 2008; Shenkin

et al., 1987; da Silva et al., 2004; Soto et al., 2008; Uhlherr, 2000; Uhlherr et al., 2001;
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Vendruscolo, 1997; Wedemeyer and Scheraga, 1999; Wick and Siepmann, 2000; Xiang

et al., 2002; Zhang et al., 2007a; Zhu et al., 2006). Most existing fragment closure

methods can be divided into three categories. The first type of methods, including

PLOP, make small changes for several adjacent torsion angles (Cahill et al., 2003;

Cui et al., 2008; Go and Scheraga, 1970; Noonan et al., 2005; da Silva et al., 2004;

Wedemeyer and Scheraga, 1999; Zhu et al., 2006). Due to the local nature of this

type of move, it often takes many steps to change a conformation to a significantly

different one, requiring a high computational cost to sample the large and contrained

conformational space of proteins. The second type of methods, such as CCD, SOS,

FALC, Loopy, and CJSD, employ a two-step approach to closure (Canutescu and

Dunbrack, 2003; Collura et al., 1993; Coutsias et al., 2004; Koehl and Delarue, 1995;

Lee et al., 2005, 2010; Liu et al., 2000, 2009; Mandell et al., 2009; Shenkin et al.,

1987; Soto et al., 2008; Xiang et al., 2002). First, they place backbone atoms without

respect to geometric constraints. Next, a deterministic or random procedure morphs

this initial conformation into one that satisfies the geometric constraints. The ability

to make larger conformational changes in a single step helps these methods achieve

higher efficiency. The third type of methods close fragment conformations using a

chain growth approach by placing residues/atoms one at a time with some constraints

to favor the closure (de Bakker et al., 2003; Jacobson et al., 2004; Vendruscolo, 1997;

Wick and Siepmann, 2000; Zhang et al., 2007a). Chain growth methods can make

large conformational changes in a single step and can potentially be quite efficient.

The problem faced by chain growth methods is how well they can “foresee the likeli-

hood” of an early placement for eventually producing connected conformations. The
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proposed algorithm in this paper belongs to the chain growth group.

Fragment closure is often the starting point of loop modeling, where the end

goal is an ab initio construction of a fragment prediction that resembles the native

conformation as closely as possible. As the length of the loop increases, the space

of possible loop conformations becomes very large (Jacobson et al., 2004; Zhu et al.,

2006; Zhao et al., 2011). Thus, it is important for a fragment closure algorithm

to produce a set of conformations with high probability of containing at least one

that is similar to the native conformation. The early identification of promising loop

conformations becomes crucial, for further loop refinement and selection to succeed

using these as starting conformations (e.g., Zhao et al., 2011). This goal should be

achieved in a computationally efficient manner.

The complete energy function used to score and select loops often cannot be

applied to all loops found during the sampling phase, as energy evaluation will dra-

matically increase the computational time required. However, if steric feasibility is

entirely ignored during sampling, the quality of sampled conformations will often be

quite low with many atomic clashes, as fragments are normally surrounded by atoms

from other parts of the protein. Several recent studies (Zhang et al., 2007a; Soto

et al., 2008; Liu et al., 2009) have taken steric and other atomic interactions into

account during the conformation sampling step and were able to generate fragment

conformations of higher quality with improved overall performance. In this study, we

investigate whether the performance of this type of method can be further improved

with more sophisticated sampling strategies, especially at longer loop lengths.

The method presented in this paper is called Fragment Re-growth by Energy-
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guided Sequential Sampling (FRESS), based on the efficient fragment closure algo-

rithm that was first developed and tested on hydrophobic-polar (HP) models (Zhang

et al., 2007a). The FRESS method achieved significantly better performance than

previous methods on benchmark HP sequences. This paper introduces an implemen-

tation of the FRESS method on off-lattice protein models with a Cartesian coordinate

representation of protein structures. To achieve high closing efficiency for real pro-

teins, we develop more advanced proposal distributions that take several constraints

into account during the sampling step. There are no required energy-minimizing

steps after the sequential residue placement. In practice, we can obtain improved

steric properties of our samples by applying a fast torsional relaxation step (Wong

et al., 1998), which minimizes the energy locally for a fragment that is already closed.

This yields significant performance gains compared to the two-step type of methods

mentioned above, which achieve steric feasibility through post-hoc minimization. The

actual closure rate obtained is an order of magnitude higher than using only torsion

angle sampling (de Bakker et al., 2003).

Another advantage of our method is that it can be used for generating proposals

in a larger Markov Chain Monte Carlo (MCMC) simulation for structure prediction.

FRESS provides a way to evaluate the Rosenbluth weight (Rosenbluth and Rosen-

bluth, 1955) of a regrown fragment (i.e., its probability of acceptance). Most other

fragment sampling methods are incompatible in this regard because they cannot eval-

uate the proposal density of their samples.

We test our sampling method on benchmark loop modeling datasets. For loops

of length four to 12, the criteria we examine is the minimum RMSD in 5000 sampled
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fragment conformations within a given computational time budget, to allow compar-

ison with other methods. For the set of longer loops of length 14 to 17 residues,

we test our method’s ability to produce a promising set of of low RMSD initial loop

conformations for further modeling.

In the rest of the paper, we develop the theoretical framework of FRESS and the

residue sampling distributions in Section 3.2. We test the method on benchmark

loop modeling datasets and compare with other previous methods in Section 3.3. We

conclude the paper with a brief discussion in Section 3.4.

3.2 Methods

Our method attempts to place each residue in a fragment sequentially, in contrast

to the “fragment assembly” approach of sampling entire fragments from known con-

formations (e.g. Lee et al., 2010; Rohl et al., 2004b). The challenge with sequential

placement, especially for longer fragments, lies in attaining closure and feasibility,

while at the same time efficiently exploring the space of low energy conformations.

FRESS is inspired by the configurational bias Monte Carlo (CBMC) method (Siep-

mann and Frenkel, 1992; Frenkel et al., 1992) to encourage the placement of each

residue to achieve steric feasibility and increase the probability of successful closure.

The key idea is to allow the sampler to learn from the environment as sequential

placement occurs.

Throughout, we adopt a number of conventions standard to loop modeling. We

limit our focus to the construction of the backbone, since side chains are usually

placed during loop scoring and selection (Bonneau and Baker, 2001). Bond lengths
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and angles are assumed fixed to the standard values of Engh and Huber (1991), with

the exception of the Cα bond angle. Finally, the fragment is assumed to start with

the backbone carbonyl C atom of the initial residue and end with the Cα atom of the

final residue. The terminal C atom refers to the backbone carbonyl C atom in the

final residue, which is fixed in space and considered the target for closure. The global

RMSD is calculated when comparing sampled loops to the native conformation.

3.2.1 Formalization

This section formalizes the FRESS procedure. Let l be the number of residues in

the fragment to be sampled. To obtain each sampled fragment, FRESS sequentially

grows the residues Ri, i = 1, . . . , l − 2, and then attempts to close the fragment

using the fast analytical closure method of Coutsias et al. (2004). This is because

the placement of the final two residues is essentially deterministic when closure is

required, due to four geometric constraints at the closing seam of the fragment: the

closing bond length; the two closing bond angles; and the ω torsion for the first Cα

atom outside the fragment (Go and Scheraga, 1970). Closure is not always possible,

e.g. if the distance from the (l− 2)-th grown Cα to the closing Cα is too small or too

large, and/or the growth up to the (l−2)-th residue is misoriented in direction. FRESS

thus seeks to grow residues in a manner that increases the likelihood of successfully

obtaining closure after the (l − 2)-th residue has been reached.

The growth of each residue requires the sampling of its relevant geometric degrees

of freedom. The backbone torsion angles ϕ and ψ per residue account for most of the

diversity possible in backbone growth. The torsion angle ω, while usually close to π,
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also has a small degree of flexibility in native conformations. Of the bond angles, the

N–Cα–C angle τ , while usually close to 110◦ can sometimes stretch to relieve steric

strains (Karplus, 1996). We were able to accurately rebuild a large collection of native

conformation backbones by allowing these four geometric aspects to vary, while fixing

the other bond lengths and bond angles to the standard values reported in Engh and

Huber (1991). We found that 5◦ increments in ϕ and ψ provided sufficient resolution

for reproducing native structures.

To build the i-th residue, FRESS will sample the set of values Ri = (ϕi, ψi, ωi, τi).

Suppose that there is a known energy function E, which accounts for interactions

both within the fragment and between the fragment and the fixed part of the protein.

The FRESS fragment proposal sampling procedure requires a series of conditional

distributions; at each residue we require a conditional distribution of the i-th residue

given the previous ones (which we denote Ri|R<i for short). Each conditional draw

of a residue will have two components, which promote closure and steric feasibility

respectively. Let si(Ri|R<i) denote the distance-based component that encourages

closure, and Ei(Ri|R<i) denote the incremental energy that measures the steric impact

of residue Ri given the previous ones.

The ϕi and ψi backbone torsion angles are the main drivers of diversity in backbone

growth. As a result, the first step in obtaining Ri involves the sampling of ϕi and ψi

from a torsion angle map with 5◦ by 5◦ grid resolution, and ωi and τi fixed at ideal

values. Suppose there are k bins with non-zero probability in the trial distribution,

i.e. si(Ri|R<i) > 0; these bins represent the directions in which residue growth may

possibly proceed. Next, the incremental energy Ei is then computed for these bins
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and combined with si to create a final sampling distribution for ϕi and ψi. From this

distribution, we make d independent draws of (ϕi, ψi). The construction of si and the

combined si × Ei distributions will be described in detail in Section 3.2.3. Finally,

for each of the d draws of (ϕi, ψi), ωi and τi are sampled from Gaussian distributions

centered at ideal values with a small variance in accordance with that observed in

native conformations. As a result of this procedure, d draws of Ri are obtained.

Since residues are grown one a time, the fragment being built may run into “dead

ends” over its course of construction where one of the following two conditions occur

when sampling a residue: (1) k = 0, that is, there are no bins with non-zero prob-

ability in the trial distribution, indicating that eventual closure of the fragment will

not be possible; (2) the incremental energy is high for all k bins, indicating that a

steric clash is unavoidable if growth is to continue. To increase the efficiency, FRESS

includes a pruning step where partially grown fragment conformations will be termi-

nated early if either of these conditions occur. In this case, having d > 1 draws saved

per residue during placement allows FRESS to back up to an earlier portion of the

fragment and resume growth.

More precisely, the FRESS procedure for sampling the i-th residue can be written

as follows:

1. Compute the distribution si(ϕi, ψi, ωi = 180◦, τi = 111◦|R<i),

over the grid ϕi, ψi ∈ {−175◦,−170◦, . . . , 180◦}.

2. Let (ϕ
(1)
i , ψ

(1)
i ), . . . , (ϕ

(k)
i , ψ

(k)
i ) denote the k grid bins with si(Ri|R<i) > 0.

3. Compute Ei(ϕ
(j)
i , ψ

(j)
i , ωi = 180◦, τi = 111◦|R<i), j = 1, . . . , k.
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4. Sample d pairs of (ϕi, ψi) independently from the probability mass function

P [(ϕi, ψi) = (ϕ
(j)
i , ψ

(j)
i )] =

si(R
(j)
i |R<i) exp(−Ei(R

(j)
i |R<i)/T )∑k

j=1

{
si(R

(j)
i |R<i) exp(−Ei(R

(j)
i |R<i)/T )

} ,
j = 1, . . . , k, where R

(j)
i = (ϕ

(j)
i , ψ

(j)
i , ωi = 180◦, τi = 111◦), and T > 0 is the

temperature chosen for the Boltzmann distribution corresponding to Ei.

5. Draw d samples from

ωi
iid∼ N(179.3◦, 4.1◦)

τi
iid∼ N(110◦, 3.5◦)

As noted earlier, the function Ei should be chosen to encourage the sampling of

sterically feasible conformations, without being too computationally intensive. A full

energy function for fragment scoring and selection would be overly burdensome, and

unlikely to be helpful at this stage before the full chain is grown and side chains are

added. As a reasonable trade-off, our E is composed of two parts: (1) A local Van

der Waals energy function based on the OPLS-AA force field parameters (Kaminski

et al., 2001); (2) the hydrophobic term introduced in (Zhu et al., 2006) to encourage

the burial of grown backbone C atoms. There is much flexibility in terms of which

scoring function to employ for this step. To keep computation costs low, Ei should

only involve interactions between the residue being placed and the rest of the protein.

An important free parameter in FRESS is d, the number of samples saved at

each residue. With larger values of d, we are more likely to sample a feasible, closed
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fragment by pruning and backing up from dead ends to resume growth. However, if

d is too large, we might waste computational time exploring non-promising portions

of the conformational space when the early residues are poorly placed, so there is a

tradeoff. The nature of this relationship is explored later in Section 3.3.

3.2.2 Monte Carlo sampling

Consider a typical folding simulation for an entire protein, in which we seek to

optimize a whole-protein energy E over the space of configurations represented by

backbone torsion angles Ai, i = 1, . . . , n. A Monte Carlo optimizer, such as sim-

ulated annealing, typically requires sampling from the Boltzmann distribution at a

temperature T > 0,

p(A) ∝ exp(−E(A)/T ), A ∈ (−π, π)n,

Samples from p can be generated using the Metropolis-Hastings algorithm for

any proposal distribution, so long as its proposal density can be evaluated to ensure

detailed balance. With appropriate modifications, FRESS can act as a valid proposal

generator to modify the chain. For instance, Zhang et al. (2007a) suggest randomly

selecting and regrowing fragments to explore the energy landscape in ab initio folding.

We briefly describe the computation of Rosenbluth weights in the context of

FRESS. These weights ensure detailed balance, as shown by (Frenkel et al., 1992) in

the development of CBMC. Suppose a fragment with original residues R0,1, . . . , R0,l

is sequentially regrown to obtain Rnew,1, . . . , Rnew,l, with ji ∈ {1, . . . , ki} denoting

the index of the chosen draw for the i-th residue, when ki draws are made from
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si(Ri|R<i). The weight Q(α) is given by the product of the selection probabilities

over the l residues in the sampled fragment. The weight Q(α0) corresponds to the

same product, but computed over the original fragment. Specifically,

Q(α) =
l∏

i=1

exp(−Ei(R
(ji)
new,i)/T )∑ki

j=1 exp(−Ei(R
(j)
new,i)/T )

Q(α0) =
l∏

i=1

exp(−Ei(R0,i)/T )

exp(−Ei(R0,i)/T ) +
∑

j ̸=ji
exp(−Ei(R

(ji)
new,i)/T )

The regrown fragment is then accepted with probability

min{1, Q(α)/Q(α0)}.

The computation of this extra weight has a non-negligible impact on the overall speed

of a long simulation. Therefore, when Monte Carlo optimization of the energy func-

tion is desired, rather than samples from the stationary distribution, we recommend

omitting the Rosenbluth weight for greater efficiency.

3.2.3 Construction of residue sampling distributions

The construction of the (ϕ, ψ) torsion angle distribution for s begins with the

Ramachandran density plot (Ramachandran et al., 1963) for the given residue and

secondary structure type, gridded into 5◦ by 5◦ bins. We denote this distribution as

s0. For most residue types, this results in roughly 800 to 1000 bins with non-zero

probability. Sampling (ϕ, ψ) from this grid alone will generate realistic torsion angles,
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but does not guarantee that the fragment will grow towards the closure target.

The main idea of our method is to update s as each residue is being placed,

such that the incremental approach and remaining distance to the closure target

are empirically sensible. To achieve this goal, a series of empirical distributions is

constructed to help guide sequential residue placement. These distributions help

encourage fragment closure while learning from the growth environment.

There are two aspects of distance information to incorporate into the s distribu-

tion. Firstly, the remaining distance to the terminal Cα anchor should be empirically

reasonable after the residue is placed. This is done by an empirical tabulation of joint

C–Cα and Cα–Cα distances, conditioned on three factors: the atom type (C or Cα),

the residue separation (from two to 18), and the secondary structure of the residue

(helix, sheet or coil). Secondly, the incremental distance towards the terminal Cα

should be sensible, given the remaining distance to the terminal Cα from the previ-

ous residue. This helps to avoid directional misorientation during growth which can

prevent the fragment from closing.

More formally, suppose that we are currently sampling the i-th residue in a frag-

ment of length l. Let d0 be the distance from the (i − 1)-th Cα to the l-th (i.e.

terminal) Cα. For a given (ϕi, ψi), with ωi and τi fixed at their ideal values, the

backbone coordinates of the (i − 1)-th C atom, and the i-th N and Cα atoms are

determined. Then let d1 be the distance from the (i− 1)-th C to the l-th Cα, which

depends on the choice of ϕi (since τi is fixed). Let d2 be the distance from the i-

th Cα to the l-th Cα, which depends on the choice of ψi (since ωi is fixed). Thus,

the sampled pair of torsion angles (ϕi, ψi) maps to the distance pair (d1, d2). The

75



Chapter 3: FRESS: A New Algorithm for Sampling Protein Fragments

effect on distance by varying ωi and τi at this step would be negligible. With these

definitions, the first aspect of distance information to incorporate is to ensure that

(d1, d2) is sensible; the second aspect is to ensure that (∆d1,∆d2) ≡ (d1− d0, d2− d0)

is sensible.

The values (∆d1,∆d2) capture a simple notion of current growth direction in the

fragment. Positive values of (∆d1,∆d2) indicate that atoms of the sampled residue

are growing away from the terminal Cα, while negative values of (∆d1,∆d2) indicate

growth toward the closure target. Intuitively, negative values of (∆d1,∆d2) are fa-

vored at higher distances of d0. This helps to move the chain towards the terminal C.

The effect is the greatest when only a few residues remain to be placed. See Figure

1 for an illustration.

To build these empirical distance distributions, we compute statistics across the

database of 16,482 proteins from the daily bc-30 list on the Protein Data Bank on

January 18, 2010. The list contains a single representative from each of 16,482 groups

clustered using BLASTclust (Altschul et al., 1997) so that no proteins share greater

than 30% sequence similarity across groups. Secondary structure information is either

obtained directly from PDB files or estimated using DSSP (Dictionary of Secondary

Structure of Proteins), as developed by Kabsch and Sander (1983). Missing atoms

and residues are dropped from all empirical statistics.

Let fl−i(d1, d2) denote the joint density of C–Cα and Cα–Cα distances, for a residue

separation of l − i. Let gl−i(∆d1,∆d2|d0) be the corresponding joint density of dis-

tances that captures the growth orientation. Based on statistics across the PDB, we

approximate the distance distributions by binning the central 99.9% of the empirical
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Figure 3.1: Joint approach distance distributions for sampling C, Cα atoms of the
current residue, when there are 3 residues remaining in the fragment. The distribu-
tions are conditioned on the remaining distance to the target, from the Cα of the
previous residue. ∆d is defined to be the change in remaining distance to the target,
for the corresponding C, Cα atoms of the residue when placed. The densities shift to
reflect the range of feasible ∆d from which to sample. For instance when the previous
Cα is 8 A away, sampling for the current residue becomes strongly guided to close the
distance gap, so that we are 0.2 to 3.6 A closer to the target after the Cα is placed.
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distances into a 16-by-16 histogram grid, followed by smoothing across adjacent cells.

For construction of the g distributions, the conditioned distance d0 are rounded to

the nearest Angstrom.

For sampling, the torsion angle distribution s must then be updated by the dis-

tance probabilities, to promote both realistic torsion angles as well as favorable dis-

tance properties. The distances will be converted to torsion angles so that the den-

sities can be multiplied. Let s0 be the raw empirical binned distribution of torsion

angles (from the Ramachandran map) and f, g of distances as defined above. Let

D : (−π, π) × (−π, π) 7→ R+ × R+ map a torsion angle pair (ϕ, ψ) to the distances

(d1, d2), and ∆D map the same angles to the incremental distances (∆d1,∆d2). Then

our final specification of si can be written as

si(ϕi, ψi) ∝ s0(ϕi, ψi)× [fl−i(D(ϕi, ψi))|J | gl−i(∆D(ϕi, ψi)|d0)|J |]λ

where f and g are probability mass within the element of the 16-by-16 distance grid,

to which the torsion angles map. J refers to the Jacobian of the distance-to-angle

map. Finally, λ controls the relative weight of the distance component.

Recall that our procedure includes a pruning step. In the context of this section,

if the empirical distance grid has no mass in the entire range of torsion angles, it

means that no fragment has ever closed when the current residue is as far away from

the terminal C as it is at the present stage, and the growth is terminated.

Figure 2 illustrates the process of updating the (ϕ, ψ) sampling distributions. The

raw torsion angle map is shown in the leftmost panel. The middle panel shows the

updated distribution after incorporating the distance component. The final samples
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Figure 3.2: Construction of ϕ, ψ sampling densities. The leftmost panel shows the
Ramachandran map for pure torsion angle sampling s0; these are the allowable torsion
angles for the residue. The center panels shows the updated density si in the ϕ, ψ
space, after incorporating the distance distribution. The rightmost panel shows the
final density after mixing in the incremental energy function (si × Ei). Note how
the relevant angle space becomes restricted as these elements are added. The final d
samples of ϕ, ψ for this residue then drawn from this map.

for (ϕ, ψ) are drawn after further multiplying si with the energy component.

3.3 Results

For the purposes of loop modeling and structure prediction, the key assessment

criteria for a fragment sampler are two-fold: (1) how close its samples are to the

native conformation; (2) its computational efficiency in drawing good samples. While

an algorithm’s overall speed in generating closed loops can be a useful intermediate

metric, the value of samples for loop prediction is finally limited by the closeness to

the native conformation of the best sampled loops. For long fragments in particular,
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the sampling of a large number of poor, sterically infeasible loops is undesirable due

to the added computational burden of screening and refining the loops using a full

energy function during the prediction phase.

We thus proceed with the evaluation of the proposed method on loop datasets

using a combination of two metrics: (1) the minimum global root mean squared de-

viation (RMSD) between 5,000 samples and the native, calculated on the backbone

atoms C, Cα, N, and O; (2) the best RMSD loop sampled within a given computa-

tional time budget. The first metric allows the comparison of FRESS performance

with existing fragment samplers for loops of length four to 12. The second metric is

important when FRESS is to be used as proposal generator for a larger MCMC sam-

pling problem, for example when loops from an entire protein need to be optimized.

Two loop datasets are used for this section. The first is the set 30 loop targets of

lengths 4, 8, and 12 in Canutescu and Dunbrack (2003). The second is the the set

of 89 long loop targets of lengths 14 to 17 in Zhao et al. (2011). The first set allows

comparison against other methods based on the 5,000 sample metric. The long loop

dataset shows the potential of FRESS for generating promising samples for the initial

phase of long loop modeling. Since most loop sampling methods are closed-source,

we compare against the results shown in Soto et al. (2008) where possible. For the

purpose of sampling these loops, FRESS uses distance and torsion angle distributions

that were built for secondary structure of coil type.

The important settings for FRESS are the following: (1) the temperature T asso-

ciated with the energy function; (2) the limit on the incremental energy Ei per residue

for pruning; (3) the weight λ that controls the relative importance of the torsion and
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distance distributions; (4) d, the number of draws saved at each residue.

To allow for computational flexibility and transparency, we attempt to make most

of these settings adaptive. The temperature T controls the degree to which low

energies are favored when growing each residue. The energy landscape and local steric

environment for each loop is different, and the temperature should be set to allow a

variety of loops to be generated. A sampler that produces a similar closure every time

is not useful because it wastes computational time without increasing the probability

of locating near-native conformations. We thus set FRESS to automatically alternate

between a range of temperatures 1 ≤ T ≤ 16 as it samples fragments.

The limit on per-residue incremental energy Ei reflects a trade-off between closure

rate and the overall steric feasibility of sampled fragments. Sampled residues that

exceed this limit are pruned. In native conformations, the VDW backbone energy

on a per-residue basis is usually low (< 5 kcal/mol). Since residues are grown one

at a time, imposing a similar constraint during sampling will generate fragments

with near-native VDW energies, at the expense of a low overall closure rate since

many draws will be pruned. To achieve a balance of closure and low energy, FRESS

dynamically monitors the number of closed fragments per trial. The initial limit on

incremental VDW energy is set to 5 kcal/mol. After a burn-in period, an adjustment

is made whenever the closure rate drops below 10%. The maximum VDW increment

is successively increased in 1 kcal/mol steps to target a closure rate of 10% or higher.

The setting λ controls for the weight of the distance component in si relative to

the raw torsion angle distribution s0. The distance distributions become increasingly

important as growth nears the end of the fragment. When analytical closure is applied
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for the final two residues, the end of the partially grown fragment should be situated

at a distance and orientation that is favorable for closure to occur. To encourage this

behavior, we apply a set of weights λ that increase linearly over the fragment. These

range from a weight of 1/l relative to the torsion distribution at the beginning of the

fragment, up to an equal weight with the torsion distribution for the final residue

grown before analytic closure is applied.

Finally, the setting d ≥ 1 is the number of draws saved at each residue. If d = 1,

the current trial is terminated as soon as pruning occurs. If d > 1, then upon pruning

FRESS backs up to a previous residue where the growth is still feasible, and uses

one of the alternative draws at that residue to resume growth. The current trial is

only terminated when all d draws are recursively exhausted. The effect of d = 1, 3, 5

is shown in Table 3.1, for sampling the length 12 loops in Canutescu and Dunbrack

(2003) with a fixed CPU time budget of 15 minutes. Higher values of d lead to higher

closure rates, at the cost of higher computational time per trial. Taking d = 3 is a

reasonable point of compromise, generating the most closed loops per unit time.

To compare with other methods for loops of length eight and greater, FRESS is

run with a given computational budget on a 2.1 GHz CPU. Often, fewer than 5,000

samples that satisfy the steric feasibility screens are produced when the time budget

is short. To allow a strict comparison with other methods, the 50 FRESS samples

with the best VDW energy after applying backbone torsional relaxation from (Wong

et al., 1998) are chosen as seeds for enrichment to generate a total of 5,000 samples.

The enrichment occurs by randomly perturbing the ϕ and ψ torsion angles of these

samples by ±5◦ increments. Fragments that can analytically close and have low VDW
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Table 3.1: Number of feasible samples drawn and proportion of fragments closed, for
different values of d given 15 minutes of CPU time on loops of length 12.

d = 1 d = 3 d = 5
Loop Samples Closed Samples Closed Samples Closed

1cruA 358 247 0.06 193 0.20 39 0.22
1ctqA 26 334 0.08 709 0.72 590 0.94
1d4oA 88 297 0.05 719 0.63 627 0.88
1d8wA 46 192 0.06 398 0.43 258 0.31
1ds1A 282 240 0.05 136 0.33 12 0.30
1dysA 291 234 0.07 546 0.47 438 0.67
1eguA 508 219 0.05 273 0.43 175 0.73
1f74A 11 234 0.07 350 0.38 313 0.37
1qlwA 31 487 0.10 770 0.74 750 0.89

1qopA 178 633 0.18 626 0.75 243 0.81
Average 312 0.08 472 0.49 345 0.61

energy after perturbation are added to the list of samples.

Table 3.2 shows the results for the 30 loop targets of lengths 4, 8, and 12 in

Canutescu and Dunbrack (2003), based on minimum RMSD attained in the first 5,000

closed feasible samples, with FRESS limited to 15 minutes of CPU time. FRESS is

compared with the following methods: Ramachandran map CCD (Canutescu and

Dunbrack, 2003), the CSJD method (Coutsias et al., 2004), the SOS algorithm (Liu

et al., 2009), the FALC/FALCm methods (Lee et al., 2010); RMSD values for these

are taken from Table II of Lee et al. (2010). FRESS has comparable resolution at the

shortest fragments of length four and eight; for the longer length 12 loops, FRESS

has the most favorable performance. The advantage of using our residue sampling

distributions becomes more apparent as loop length increases.

Next, we show FRESS results for the set of 89 long loop targets of lengths 14

to 17 studied by Zhao et al. (2011) in Table 3.3. Results for other methods are not
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available for sampling loops of these lengths. We note that FRESS is able to produce

conformations within the resolution required for further loop refinement as in Zhao

et al. (2011), with the RMSD metric continuing to perform well for these longer loops

without significant degradation.

3.4 Conclusion and discussion

In summary, we have developed an efficient fragment closure method using se-

quential sampling. Residue sampling distributions are constructed to increase the

efficiency in fragment closure and exploration of low energy conformational spaces.

The method was tested on benchmark loop modeling datasets and performs better

than earlier methods in the criteria we have examined. Our method is based on grow-

ing residues sequentially with favorable empirical distances from the fixed terminal

anchor and favorable torsion angles, while accounting for steric feasibility via a simple

energy function. It does not require a post-hoc closure step to achieve closure, and is

able to generate good fragment samples efficiently.

FRESS is also highly extensible. The version discussed here conditions on the

distance to the terminal C and secondary structure. It is possible to extend this by

incorporating additional conditioning variables, such as residue or solvent accessibil-

ity. We have also implemented FRESS as a proposal step within a larger tertiary

structure prediction system to refine homology models based on repetitively resam-

pling fragments to find lower energies (Zhang et al., 2007a). Our sequential strategy

takes a high-dimensional sampling problem and divides it into tractable pieces; in

this case an appropriate unit is one residue at a time. The constraints imposed by
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Table 3.2: Comparison of fragment sampling methods’ minimum RMSD from native
reached after 5,000 samples, for the set of 30 loops in Canu et al (2003). Results for
the first five columns are taken from Table II of Lee (2010). For 8 and 12 residue loops,
a computational time limit of 15 minutes is imposed on FRESS. For the purpose of
this comparison, the sampled loops in FRESS are enriched to create a total of 5,000
closed loops (see text for explanation).

Length Loop CCD CJSD SOS FALC FALCm FRESS
4-res 1dvjA 20 0.61 0.38 0.23 0.34 0.39 0.33

1dysA 47 0.68 0.37 0.16 0.17 0.20 0.17
1eguA 404 0.68 0.36 0.16 0.22 0.22 0.35
1ej0A 74 0.34 0.21 0.16 0.16 0.15 0.18
1i0hA 123 0.62 0.26 0.22 0.09 0.17 0.17
1id0A 405 0.67 0.72 0.33 0.20 0.19 0.28
1qnrA 195 0.49 0.39 0.32 0.23 0.23 0.40
1qopA 44 0.63 0.61 0.13 0.28 0.30 0.22
1tca 95 0.39 0.28 0.15 0.08 0.09 0.07

1thfD 121 0.50 0.36 0.11 0.21 0.21 0.11
Average 0.56 0.40 0.20 0.20 0.22 0.23

8-res 1cruA 85 1.75 0.99 1.48 0.60 0.62 0.95
1ctqA 144 1.34 0.96 1.37 0.62 0.56 0.54
1d8wA 334 1.51 0.37 1.18 0.96 0.78 1.29
1ds1A 20 1.58 1.30 0.93 0.80 0.73 0.67
1gk8A 122 1.68 1.29 0.96 0.79 0.62 0.98
1i0hA 145 1.35 0.36 1.37 0.88 0.74 0.35
1ixh 106 1.61 2.36 1.21 0.59 0.57 0.38
1lam 420 1.60 0.83 0.90 0.79 0.66 1.10
1qopB 14 1.85 0.69 1.24 0.72 0.92 0.83
3chbD 51 1.66 0.96 1.23 1.03 1.03 0.55
Average 1.59 1.01 1.19 0.78 0.72 0.76

12-res 1cruA 358 2.54 2.00 2.39 2.27 2.07 2.21
1ctqA 26 2.49 1.86 2.54 1.72 1.66 1.44
1d4oA 88 2.33 1.60 2.44 0.84 0.82 2.64
1d8wA 46 4.83 2.94 2.17 2.11 2.09 1.58
1ds1A 282 3.04 3.10 2.33 2.16 2.10 1.43
1dysA 291 2.48 3.04 2.08 1.83 1.67 1.58
1eguA 508 2.14 2.82 2.36 1.68 1.71 1.43
1f74A 11 2.72 1.53 2.23 1.33 1.44 1.31
1qlwA 31 3.38 2.32 1.73 2.11 2.20 2.20
1qopA 178 4.57 2.18 2.21 2.37 2.36 1.69
Average 3.05 2.34 2.25 1.84 1.81 1.75
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Table 3.3: Average minimum RMSD obtained, for the 89 long loops in Zhao et al.
(2011).

Loop Length 14 15 16 17
Number of Loops 36 31 13 9

Average Minimum RMSD 2.17 2.27 2.39 2.62

closure and energy make this an intuitive choice to provide sufficient guidance. At this

amino acid level, a follow-up extension might use conditional Ramachandran maps

to leverage the dependencies between the torsion angles of adjacent residues.

The general sequential importance sampling method (Liu and Chen, 1998; Liu,

2001; Rosenbluth and Rosenbluth, 1955) has been applied previously to sample whole

protein chains (Zhang and Liu, 2002; Gan et al., 2000; Grassberger, 1997; Hsu et al.,

2003; Zhang et al., 2004, 2007a,b, 2008; Meirovitch, 1982; Cheluvaraja and Meirovitch,

2004; Mamonov et al., 2011; Lin et al., 2008; Zhang et al., 2009; Lin et al., 2011) and

to sample side chains (Zhang and Liu, 2006; Jain et al., 2006). In a MCMC setting,

it is also known as configurational bias Monte Carlo (CBMC), originally developed

by Siepmann and Frenkel (1992) and Frenkel et al. (1992). In this study, we have

built on these ideas to develop an effective fragment closure method useful for protein

structure simulation.

The potential energy function used in this study to guide the conformation sam-

pling is effective for generating high quality fragment conformations without the need

for a very large amount of samples. As such, loop samples generated by FRESS

can provide promising initial conformations for further loop modeling and prediction

within a small computational budget. The energy function used in this study for

sampling has not been optimized to discriminate natives from decoys, compared to
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the more sophisticated energy functions used by other researchers in loop prediction.

Good accuracy in loop prediction requires both an efficient sampling method and

an accurate energy function. This study focuses on the sampling method for loop

modeling and the results are also evaluated for the same purpose. We will undertake

the loop prediction problem in a future work.
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