Formation of the Postmitotic Nuclear Envelope from Extended ER Cisternae Precedes Nuclear Pore Assembly

Citation

Published Version
doi://10.1083/jcb.201012063

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10288478

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Formation of the postmitotic nuclear envelope from extended ER cisternae precedes nuclear pore assembly

Lei Lu,1,2,3 Mark S. Ladinsky,4,5 and Tomas Kirchhausen1,2

1 Department of Cell Biology, Harvard Medical School, Boston, MA 02115
2 Immune Disease Institute and Program in Cellular and Molecular Medicine, Children’s Hospital Boston, Boston, MA 02115
3 School of Biological Sciences, Nanyang Technological University, Singapore 639798
4 Division of Biology and 5 Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125

During mitosis, the nuclear envelope merges with the endoplasmic reticulum (ER), and nuclear pore complexes are disassembled. In a current model for reassembly after mitosis, the nuclear envelope forms by a reshaping of ER tubules. For the assembly of pores, two major models have been proposed. In the insertion model, nuclear pore complexes are embedded in the nuclear envelope after their formation. In the preprene model, nucleoporins assemble on the chromatin as an intermediate nuclear pore complex before nuclear envelope formation. Using live-cell imaging and electron microscope tomography, we find that the mitotic assembly of the nuclear envelope primarily originates from ER cisternae. Moreover, the nuclear pore complexes assemble only on the already formed nuclear envelope. Indeed, all the chromatin-associated Nup107–160 complexes are in single units instead of assembled preprores. We therefore propose that the postmitotic nuclear envelope assembles directly from ER cisternae followed by membrane-dependent insertion of nuclear pore complexes.

Introduction

The nuclear envelope is a specialized, double-membrane domain of the ER that encloses the chromatin and separates it from the cytoplasm (Baumann and Walz, 2001; Burke and Ellenberg, 2002). The two membranes of the nuclear envelope join with each other around the nuclear pores, structures that allow transport of macromolecules between the cytosol and the nucleus (Hetzer et al., 2005). A nuclear pore forms by assembly of the ≈120-MD nuclear pore complex, which in mammals comprises >30 proteins known as nucleoporins or Nups. The nuclear envelope and pores disassemble at the end of prophase. The transmembrane proteins of the nuclear envelope move into the mitotic ER, and the soluble components of the nuclear pore complex disperse in the cytosol (Ellenberg et al., 1997; Yang et al., 1997). Reassembly of the nuclear envelope and nuclear pore complexes occurs at the end of mitosis, and further doubling of the number of pores occurs during interphase (D’Angelo et al., 2006).

It has been proposed that the postmitotic nuclear envelope arises by the fusion of mitotic ER tubules as they attach to the surface of the chromosome mass followed by lateral expansion around the chromatin. In support of this model, there are data from in vitro fluorescence microscopy demonstrating nuclear envelope reconstitution from a Xenopus laevis extract enriched in the tubular ER network (Anderson and Hetzer, 2007) and in vivo images of U2OS cells showing the presence of a few ER tubules next to the chromosomes during anaphase (Anderson and Hetzer, 2008). We have found, however, that during mitosis, the ER of mammalian cells undergoes a massive reorganization, from the mix of tubules and cisternae normally present during interphase to extended cisternae. The extended cisternae remain from the end of prophase through the end of mitosis, returning to a mixture of tubules and cisternae after cytokinesis. These observations were made by rapid, live-cell 3D imaging with confirmation from high-resolution electron tomography of samples preserved by high-pressure freezing and freeze substitution.

Correspondence to Tomas Kirchhausen: kirchhausen@crystal.harvard.edu; or Lei Lu: lulei@ntu.edu.sg

Abbreviations used in this paper: ELYS, embryonic large molecule derived from yolk sac; IBB, importin-β binding domain.

© 2011 Lu et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/.
other (Video 1); this step was followed by the collapse of each set of daughter chromosomes into a disk-shaped chromosome mass, onto which the nuclear envelope subsequently assembled (Fig. 1 A). To facilitate the analysis, we divided the surface of the disk-shaped chromosome mass into a rim region, a proximal side facing the spindle pole and a distal side facing the cell interior (Fig. 1 B). The nuclear envelope initiation step (Fig. 1 A, 0 s, arrows) was defined as the first observable tight association between ER cisternae and chromosome mass, which always occurred at the rim, typically 450 ± 60 s (n = 5) after onset of anaphase (Fig. S1), in agreement with earlier snapshot observations using fluorescent or electron microscopy (Chaudhary and Courvalin, 1993; Haraguchi et al., 2008). The ER membranes in close contact with the chromosome mass rapidly accumulated resident nuclear envelope membrane proteins, such as LBR (lamin B receptor), emerin, and sun2, concomitant with loss of the ER membrane protein reticulon4a, thus indicating a transition from the ER to the nascent nuclear envelope (Fig. 2 and Fig. S2). After a delay of 110 ± 50 s (n = 5), the nascent nuclear envelope began to extend along the proximal and distal sides of the chromosome mass (Fig. 1 A, 120–420 s) at a maximal rate of 1.3 ± 0.4 µm/min (n = 5). At 840 ± 110 s (n = 5) after onset of anaphase, the migrating fronts eventually met to seal up all the visible gaps (Fig. 1 A, 480 s; and Fig. S1 B), thus defining the completion of nuclear envelope formation. The period between nuclear envelope initiation and completion was 410 ± 60 s (n = 10). Just as in HeLa cells, nuclear envelope assembly in 293 cells originated from extended ER cisternae and began along the rim of the chromosome mass followed by centripetal growth along both sides of the chromosome mass (unpublished data). In contrast, nuclear envelope assembly in BSC1 cells initiated not only at the rim but also at multiple sites on the proximal and distal sides of the chromosome mass (Video 2).

We expanded the 2D live-cell imaging to observations using dual-color 3D time-lapse imaging combined with surface rendering of GFP-Sec61β and H2B-mCherry in mitotic HeLa cells (Fig. 1 B). These experiments confirmed that the nuclear envelope forms from the deposition of ER cisternae to the rim of the disk-shaped chromosome mass, with growth extending toward the spindle axis. We believe that the asymmetric nuclear envelope assembly is related to the presence of the spindle microtubules, which hinder the access of the extended ER cisternae to the distal and proximal sides along the opposite sides of the chromosome mass. As shown in Fig. 3 A, the ER is excluded from the spindle pole and the space between the two chromosome masses, both of which are occupied by spindle microtubules as demonstrated previously (Haraguchi et al., 2008). Access of ER cisternae to the proximal and distal sides of the chromosome mass can be accelerated by nocodazole-mediated depolymerization of spindle microtubules (Fig. 3, compare A with B; and compare Video 3 with Video 4), leading to simultaneous nuclear envelope formation at multiple sites at the rim, the proximal and distal sides of the chromosome mass, and hence, accelerated completion from 410 ± 60 s (n = 10) in control cells to 340 ± 50 s (n = 3) in nocodazole-treated cells. Conversely, interference with dissolution of the spindle should retard nuclear envelope assembly, and stabilization of the spindle microtubules.
leads to the prediction that the postmitotic nuclear envelope is formed directly from ER cisternae. Indeed, dual-color 3D live-cell imaging of HeLa cells expressing both Sec61β and H2B clearly shows continuity between the extended ER cisternae and the nascent nuclear envelope in contact with the chromosome.
nuclear envelope using EM tomographic reconstruction of samples preserved by high-pressure freezing and freeze substitution. BSC1 cells completing metaphase were first identified at low magnification by the appearance of the cell shape and chromosomes (Fig. 4 C, a). In agreement with our previous observations (Lu et al., 2009), the vast majority of the mitotic ER was in extended cisternae, with a typical luminal spacing of 120 nm, dotted with ribosomes along both surfaces and with no indication of tubules. We could capture instances showing the ER in close contact with the chromosome mass, which we propose to be a nascent nuclear envelope. The example in Fig. 4 C illustrates such a case: a portion of an extended ER cisterna has

mass (Fig. 4 A and Fig. S3 A). We obtained similar results with BSC1 cells (Fig. 4 B) even though nuclear envelope assembly initiates at multiple sites on the chromosome mass, suggesting that formation of the postmitotic nuclear envelope by the extended ER cisternae does not depend on where assembly begins.

High-resolution EM tomography of the nascent nuclear envelope
To validate the contribution of extended ER cisternae as a major membrane source for the postmitotic assembly of the nuclear envelope, we obtained high-resolution images of the nascent nuclear envelope using EM tomographic reconstruction of samples preserved by high-pressure freezing and freeze substitution. BSC1 cells completing metaphase were first identified at low magnification by the appearance of the cell shape and chromosomes (Fig. 4 C, a). In agreement with our previous observations (Lu et al., 2009), the vast majority of the mitotic ER was in extended cisternae, with a typical luminal spacing of 120 nm, dotted with ribosomes along both surfaces and with no indication of tubules. We could capture instances showing the ER in close contact with the chromosome mass, which we propose to be a nascent nuclear envelope. The example in Fig. 4 C illustrates such a case: a portion of an extended ER cisterna has
Figure 3. **Effect during mitosis of spindle microtubules on nuclear envelope formation.** 2D time-lapse images from mitotic HeLa cells expressing GFP-Sec61β and mCherry-tubulin were acquired during nuclear envelope assembly. (A) Control (also see Video 3) in the absence of nocodazole. (B) Nocodazole treated (also see Video 4). 33 µM nocodazole was added shortly after the onset of anaphase. Arrowheads indicate nuclear envelope initiation at the pole distal region of the chromosome mass. (C) Taxol treated (also see Video 5). 2 µM taxol was added shortly after the onset of anaphase. Arrowheads indicate a gap on the nuclear envelope obstructed by stabilized spindle microtubules. 0 s corresponds to the onset of nuclear envelope formation. Nuclear envelope (NE; green lines) corresponds to regions containing Sec61β on the contour of the chromosome mass, visible as a dark region because of its exclusion of soluble mCherry-tubulin. Bars, 10 µm.
Figure 4. Direct contribution of ER cisternae to assembly of the nuclear envelope. (A and B) 3D renderings and serial optical sections show the relationship between the ER cisternae and nascent nuclear envelope in HeLa (A) and BSC1 (B) cells. 3D image stacks were acquired from mitotic cells expressing GFP-Sec61β and H2B-RFP. (a) Fluorescent image from the middle section. The boxed region contains an example of ER cisternae in continuity with the nascent
already attached to the chromosome mass, with the two membrane layers uniformly separated by the \(\sim 50 \)-nm spacing characteristic of the interphase nuclear envelope (Crisp and Burke, 2008) and with ribosomes only on the cytosolic side. Additional examples of EM tomograms of the nascent nuclear envelope with similar characteristics from BSC1 and IEC6 cells are shown in Fig. S3 (B and C). The resolution of the EM tomograms rules out the possibility that the nascent nuclear envelope originates by fusion of closely packed ER tubules.

Kinetics of the ER to nuclear envelope transformation

We took advantage of the known steady-state distribution of several ER and nuclear envelope membrane proteins during interphase and mitosis to assess the kinetics of their reassortment in the nascent nuclear envelope. Reticulons are membrane proteins excluded from the nuclear envelope and preferentially targeted to highly curved regions of the ER during interphase, including tubules and the edges of the cisternae (Voeltz et al., 2006). Nuclear envelope resident membrane proteins, such as LBR, emerin, and sun2, concentrate on the inner nuclear membrane. During mitosis, these proteins distribute evenly and colocalize with each other and with the ER membrane protein Sec61\(\beta\) (Ellenberg et al., 1997; Haraguchi et al., 2001; Anderson and Hetzer, 2007; Lu et al., 2009). By 2D live-cell imaging in mitotic HeLa cells, we followed the distribution of GFP-reticulon4a (Rtn4HD), GFP-emerin, GFP-LBR, or GFP-sun2 expressed along with mCherry-Sec61\(\beta\). As expected, during anaphase, all of these proteins colocalized with ER cisternae (Fig. 2 and Fig. S2). The initial association of the ER with the rim of the chromosome mass began with the same protein content as in the mitotic ER followed by enrichment with resident nuclear envelope proteins and concomitant exclusion of reticulon4a, consistent with a previous study (Anderson and Hetzer, 2008). The relative content of Sec61\(\beta\) remained constant in both the ER and nuclear envelope (Fig. 2 and Fig. S2). After completion of nuclear envelope assembly, emerin (but not LBR or sun2) displayed a second phase of redistribution, switching from an even distribution to a polarized localization at the proximal and distal sides of the chromosome mass, ending again with a uniform distribution all around the chromosome mass (Fig. S2). The polarized location of emerin, followed by uniform redistribution, corresponds to an earlier observation by Haraguchi et al. (2000). Our substantially higher temporal resolution indicates that emerin, like the other nuclear membrane proteins, is first recruited to the rim and then accumulates on the proximal and distal sides of the chromosome mass. These observations suggest a dynamic sorting of the ER and nuclear envelope resident proteins during the postmitotic transformation from the ER into nuclear envelope.

Nuclear envelope formation always precedes assembly of nuclear pore complexes

The Nup107–160 complex is the first element of the nuclear pore complex known to associate with the chromosome mass during mitotic reassembly of nuclear pores (Belgareh et al., 2001; Harel et al., 2003; Walther et al., 2003; Antonin et al., 2005; Dultz et al., 2008). From ensemble data obtained by quantitative live-cell imaging, it has been proposed that, during early anaphase, the Nup107–160 complex assembles onto chromatin, forming the so-called prepore, followed by recruitment of POM121, a nuclear envelope membrane component of the nuclear pore complex (Dultz et al., 2008). From these observations, it was assumed that assembly of the prepore complex precedes formation of the nuclear envelope (Dultz et al., 2008). To aid the detection of nuclear pore complexes tracked as single objects, we increased the fluorescence signal to noise ratio by using triple GFP-tagged Nup133 (GFP×3-Nup133; Belgareh et al., 2001; Rabut et al., 2004). We found, by including Sec61\(\beta\) as a fluorescent marker for the nascent nuclear envelope, that formation of the nuclear envelope always preceded recruitment of the Nup107–160 complex (Fig. 5; Fig. S4, A and B; and Video 6). Our marker for the Nup107–160 complex, GFP×3-Nup133, was distributed with an even signal throughout the cytosol of mitotic cells that lacked a newly formed nuclear envelope and with a slight, diffuse accumulation within the chromosome mass relative to the cytosol (fluorescence intensity ratio of 1.20 ± 0.15, \(n = 5 \); Fig. 5, A and B) and as spots on kinetochores as reported previously (Fig. 5, D and E, open arrowheads; Belgareh et al., 2001; Zuccolo et al., 2007; Dultz et al., 2008). In contrast, GFP-Nup62, a soluble component of the nuclear pore nucleated after the Nup107–160 complex, is excluded from the chromosome mass (fluorescence intensity ratio of 0.67 ± 0.05, \(n = 6 \); \(P = 0.0008 \); Fig. 5, A and B). Our results are consistent with previous studies in both mammalian cells and Xenopus in vitro reconstitution systems (Belgareh et al., 2001; Franz et al., 2007; Gillespie et al., 2007; Dultz et al., 2008; Rasala et al., 2008).

After the onset of nuclear envelope assembly, we observed new fluorescent GFP×3-Nup133 spots starting 80 ± 50 s (\(n = 6 \)) after nuclear envelope initiation or 470 ± 20 s (\(n = 5 \)) after the onset of anaphase but only at the rim of the chromosome mass, which was already occupied by the newly formed envelope tagged with mCherry-Sec61\(\beta\) (Fig. 5, C–E; Fig. S1 C; and Video 6). Similarly, two other components of the Nup107–160 complex, GFP-tagged Shh1 and GFP-tagged Nup37, were also recruited to the nascent nuclear membrane (Fig. 6, A and B). We confirmed the temporal relationship between the early recruitment of Nup133 with the delayed recruitment of Nup62 in HeLa cells simultaneously expressing GFP-Nup62 and tomato-Nup133 (Fig. S4, C and D). The onset of GFP-Nup62 recruitment is further shown in b together with evenly spaced serial images along the z axis. The section at \(0.00 \) \(\mu \)m corresponds to the optical section in a. b’ displays rendered 3D views of region b. The example highlights a direct contact between ER cisternae (green lines) and the nascent nuclear envelope (NE; white lines). (C) EM tomograms of the nascent nuclear envelope from an anaphase BSC1 cell. a Low magnification image of the whole cell. b and c A representative EM tomographic slice from the boxed region is shown without (b) and with (c) superimposition of a model for ER cisterna (green) and ribosomes (magenta). Chrom., chromosome mass. (d–f) Three views of the rendered 3D model. ER membrane, ribosome, and the surface of the chromosome mass are colored in green, magenta, and blue, respectively. Bars: (A–C, a) 10 \(\mu \)m; (A and B, b) 2 \(\mu \)m; (C, b and f) 200 nm.
Figure 5. **Assembly of higher order Nup133 structures is restricted to the nascent nuclear envelope membrane.** (A) Association of Nup133, a component of the Nup107–160 complex, and Nup62 with the chromosome mass during early anaphase. The image is the middle section of a HeLa cell coexpressing GFP×3-Nup133 and H2B-mCherry (left) or GFP-Nup62 and H2B-mCherry (right) 30 s before its recruitment onto the nuclear envelope. The signal of H2B-mCherry (not depicted) was used to delineate the outer contours of the chromosome masses (dotted red lines). (B) Mean fluorescence intensity ratios ± SD of chromosome mass to cytosol for Nup133 and Nup62. The difference in ratios is statistically significant (P = 0.008). Chrom., chromosome. (C) A 2D time lapse from a mitotic HeLa cell expressing GFP×3-Nup133 and mCherry-Sec61β showing the recruitment of Nup133 onto the nuclear envelope (also see Video 6). The boxed regions are enlarged in D, and further enlarged boxed regions from D are shown in E. The onset of nuclear envelope formation is at 0 s. Open arrowheads show Nup133 associated with kinetochores. Closed arrowheads show Nup133 recruited to the nascent nuclear envelope. Note that Nup133 is absent on the surface of the chromosome mass at sites devoid of the nuclear envelope. Bars: (A and C) 10 µm; (D and E) 5 µm.
Assembly of higher order Nup107–160 structures, visualized by imaging Seh1 or Nup37, is restricted to the nascent nuclear envelope membrane. (A) 2D time lapse from a mitotic HeLa cell coexpressing GFP-Seh1 and mCherry-Sec61β showing the recruitment of Seh1 (closed arrowheads) onto the nuclear envelope. (B) 2D time lapse from a mitotic HeLa cell coexpressing GFP-Nup37 and mCherry-Sec61β showing the recruitment of Nup37 (closed arrowheads) onto the nuclear envelope. Open arrowheads indicate kinetochores. See legend of Fig 5 (C and D) for a detailed description. Boxes in A and B are enlarged at the bottom. Bars, 10 μm.
occurred ~3 min after nuclear envelope initiation, delayed by 110 ± 30 s (n = 4) with respect to Nup133 recruitment (Fig. S4, C and D). All the spots containing Nup62 colocalized with Nup133, in agreement with the sequential assembly of nuclear pore complexes as previously suggested (Dultz et al., 2008). These results strongly suggest that the assembly of nuclear pores occurs on the preformed nuclear envelope.

To test directly whether the fluorescent spots of GFP×3-Nup133 associated with the nascent nuclear envelope corresponded to nuclear pores, we first calibrated the fluorescence intensity of a triple GFP molecule by determining the mean fluorescence of single spots visualized on a glass coverslip containing a dilute solution of cytosol from cells expressing α2-GFP (a monomeric subunit of the clathrin adaptor AP-2 complex) or GFP×3 (Fig. S5). Single spots of α2-GFP (Fig. S5 A) displayed ~1/3 of the fluorescence signal generated by GFP×3 (Fig. S5 B), thus providing the required single-molecule intensity calibration.

We then imaged fixed cells expressing low levels of GFP×3, H2B-mCherry, and mCherry-CAAX at interphase and quantitatively determined the amount of GFP×3 associated with a given fluorescent spot (Fig. S5 C). The mean fluorescence intensity of the spots imaged throughout the cytosol was equivalent to the fluorescence intensity measured for the single GFP×3 molecules, therefore providing additional quantitative validation of the intensity measurements. As a further control, we imaged interphase nuclear pores (Fig. 7 A), which are known to contain 16 copies of Nup107–160 complexes (Cronshaw et al., 2002; Rabut et al., 2004). The histogram in Fig. 7 A corresponds to the GFP×3-Nup133 content in nuclear pores on the bottom of the nuclear envelope and is obtained after normalization by the fluorescence intensity expected for a triple GFP molecule. We found that the mean GFP×3-Nup133 content per nuclear pore complex was 7.6 ± 3.4 (n = 1,690 from 16 cells), suggesting that in the interphase pores, ~50% of the newly assembled Nup133 had been replaced by GFP×3-Nup133. We then analyzed GFP×3-Nup133 in fixed anaphase and telophase cells (Fig. 7, B–F), focusing on the following locations (Fig. 7 C): the cytosol (Fig. 7 C, cytosol), the region of chromosome mass lacking the nuclear envelope, including the spindle pole distal side and the interior of the chromosome mass (Fig. 7 C, chrom.), the region of chromosome mass where the nascent nuclear envelope forms (Fig. 7 C, rim), and the region occupied by kinetochores, including the spindle pole proximal side (Fig. 7 C, kinetochore). For the cell in Fig. 7 B, the recruitment of Nup133 at the rim had just occurred at the time the cells were fixed (Fig. 7 B, arrowheads). Relatively weak single spots in the cytosol and on the chromosome masses contained 0.84 ± 0.64 (n = 70) and 0.93 ± 0.67 (n = 92) copies of GFP×3-Nup133, respectively (Fig. 7 D, cytosol and chrom.), consistent with the view that at this stage, Nup107–160 complexes are in single units rather than higher order prepore structures. The spots at the rim of the chromosome mass in early anaphase, before significant recruitment of Nup133, contained 1.1 ± 0.6 (n = 93) GFP×3-Nup133 (Fig. 7 E), skewing at later times toward a distribution with a subset peaking at a higher GFP×3-Nup133 content (Fig. 7 D, rim). In contrast, during telophase, the spots at the rim had on average 2.7 ± 1.2 GFP×3-Nup133 molecules, with a subset showing a distribution peaking at approximately four GFP×3-Nup133 molecules (Fig. 7 F). This distribution is consistent with the expected combined content of GFP×3-tagged Nup133 and endogenous Nup133 in newly assembled postmitotic nuclear pores, as they should contain on average ~50% of the GFP×3-Nup133 content of premitotic nuclear pores. This dilution is the result expected if all Nup107–160 complexes contained in the fluorescent and nonfluorescent old pores contribute to the formation of all postmitotic nuclear pores. Finally, the fluorescent spots identified in the kinetochore region contain on average 6.1 ± 1.7 (n = 76; Fig. 7 D, kinetochore) or 5.7 ± 2.1 (n = 410 from nine cells; Fig. S5 D) GFP×3-Nup133 molecules. The relative intensity of these signals was also used as an internal calibration to show the restricted appearance of bright Nup133 spots on the nascent nuclear envelope during live-cell imaging (Fig. 5, C–E). Together, these observations indicate that Nup107–160 complexes associate with the chromosome mass as single units rather than the formation of prepores before the assembly of the nuclear envelope. They also show that assembly of the nuclear pore is restricted to regions of the chromosome mass associated with the nascent nuclear envelope.

Spatial and temporal relation of postmitotic nuclear import and nuclear envelope formation

The import of nuclear cargo was followed by live-cell imaging of a chimeric protein made of importin-β binding domain (IBB) fused to tomato (IBB-tomato) in cells coexpressing GFP-Sec61β (Fig. 8 A). During interphase, IBB undergoes efficient nuclear import through nuclear pore complexes. Upon mitotic nuclear envelope breakdown, it is released into the cytosol (Dultz et al., 2008). The times for recruitment of Nup133, Nup62, and Sec61β and for IBB import are shown as plots in Fig. 8 B (also see Fig. S1). Nuclear accumulation of IBB occurred 620 ± 50 s (n = 5) after the onset of anaphase, at a time when ~3/4 of the nuclear envelope had already assembled (Fig. 8 A). IBB accumulation always began at the rim of the chromosome mass close to the region where the nuclear envelope and pore assembly initiated (Fig. 8 A, IBB onset). The results were unexpected because there are clear gaps in the nuclear envelope between the cytosol and the chromosome mass (Fig. 8 A, arrowheads). These observations highlight the need to use the nuclear envelope rather than IBB import as a temporal reference for the nuclear envelope assembly because onset of IBB import cannot be equated with completion of the postmitotic nuclear envelope as it was assumed in previous studies (Anderson and Hetzer, 2008; Dultz et al., 2008).

Discussion

We have shown here, using 2D and 3D live-cell imaging with confirmation from high-resolution EM tomography, that ER cistermiae are the main contributors to the postmitotic formation of the nuclear envelope. We have also demonstrated that the presence of the nuclear envelope is essential for the postmitotic assembly of nuclear pores. We have found no evidence for the formation of prepores in those regions of the mitotic chromosome mass devoid of the nuclear envelope.
In our previous work, we followed the distribution of ER and nuclear envelope markers during mitosis using live-cell imaging (Lu et al., 2009). We concluded that during mitosis, most of the ER is organized as extended cisternae or sheets present throughout the cytosol but are excluded from the spindle region, with a very small fraction of the ER remaining as tubules along the spindle microtubules. The prevalence of extended ER cisternae during mitosis led us to investigate whether these ER cisternae, rather than tubules, are the source of membrane for the formation of the postmitotic nuclear envelope. The Sec61 pattern within a single optical section always appears as a smooth curvilinear tracing connecting the ER within the cytosol to a membrane immediately adjacent to the chromosome mass. The membrane associated with the chromosome mass is enriched in the nuclear resident proteins LBR, Sun2, and emerin and depleted of the ER protein reticulon4a, consistent with its transformation from the ER to the nuclear envelope. Earlier, we demonstrated that the curvilinear tracings correspond to optical sections of extended cisternae (Lu et al., 2009). These observations indicate that the nuclear envelope arises directly from cisternal rather than tubular ER. This interpretation is in full agreement with our high-resolution EM tomographic observations from mitotic cells showing profiles corresponding to the nascent nuclear envelope contiguous with ER cisternae but not tubules. An important prediction from these observations is that the absence of ER tubules should not affect postmitotic nuclear envelope formation. To test this idea, we took advantage of the observation that during interphase, acute microtubule depolymerization leads to the rapid and complete conversion of ER tubules into cisternae (Lu et al., 2009). Likewise, treatment with nocodazole at anaphase leads to the rapid loss of the spindle microtubules, whereas formation of the postmitotic nuclear envelope still proceeds, consistent with the notion that ER tubules do not represent an important source of ER membrane for nascent nuclear envelopes.

Hetzer’s group has proposed an alternative model, suggesting that ER tubules first attach to the chromosome mass followed by a lateral expansion on the surface of the chromosome masses and nuclei were established by following the location of the H2B-mCherry fluorescence signal (dotted red lines). [A] Interphase nuclear pores. The image is from a nuclear envelope located at the bottom side of nucleus close to the glass coverslip. Fluorescence intensity distribution of 1,690 GFP×3-Nup133 spots imaged in 16 cells. The data represent the results from 16 cells. (B) Image from the middle section of a cell in anaphase acquired during the initial stages of Nup133 recruitment. The yellow boxes contain diffraction-limited fluorescent spots acquired from (a) rim region, (b) kinetochore region, (c) chromosome mass, (d) cytosol, and (e) control region without objects (background). Nondiffraction-limited objects (arrowheads) were excluded from the analysis. (C) Schematic representation of the regions used for analysis. (D) Fluorescence intensity distribution of diffraction-limited spots from each of the four regions color coded as indicated in C. (E) Image from the middle section of a cell in anaphase before the onset of Nup133 recruitment to the nuclear envelope and fluorescence intensity distribution of diffraction-limited Nup133 spots at the rim of the chromosome mass. (F) Image from the middle section of a cell in telophase and fluorescence intensity distribution of diffraction-limited Nup133 spots at the rim of the chromosome mass. Note the appearance of a population of spots peaking at approximately four GFP×3-Nup133. In B–D, the data represent the results from three cells. Chrom., chromosome. Bars, 10 µm.

Figure 7. Quantification of GFP×3-Nup133 during the postmitotic nuclear pore assembly. HeLa cells coexpressing GFP×3-Nup133 and H2B-mCherry (not depicted) were chemically fixed and then imaged in 3D. Contours around the chromosome masses and nuclei were established by following the location of the H2B-mCherry fluorescence signal (dotted red lines). [A] Interphase nuclear pores. The image is from a nuclear envelope located at the bottom side of nucleus close to the glass coverslip. Fluorescence intensity distribution of 1,690 GFP×3-Nup133 spots imaged in 16 cells. The data represent the results from 16 cells. (B) Image from the middle section of a cell in anaphase acquired during the initial stages of Nup133 recruitment. The yellow boxes contain diffraction-limited fluorescent spots acquired from (a) rim region, (b) kinetochore region, (c) chromosome mass, (d) cytosol, and (e) control region without objects (background). Nondiffraction-limited objects (arrowheads) were excluded from the analysis. (C) Schematic representation of the regions used for analysis. (D) Fluorescence intensity distribution of diffraction-limited spots from each of the four regions color coded as indicated in C. (E) Image from the middle section of a cell in anaphase before the onset of Nup133 recruitment to the nuclear envelope and fluorescence intensity distribution of diffraction-limited Nup133 spots at the rim of the chromosome mass. (F) Image from the middle section of a cell in telophase and fluorescence intensity distribution of diffraction-limited Nup133 spots at the rim of the chromosome mass. Note the appearance of a population of spots peaking at approximately four GFP×3-Nup133. In B–D, the data represent the results from three cells. Chrom., chromosome. Bars, 10 µm.
Figure 8. Postmitotic import of IBB, summary of kinetic results obtained in this study, and working model for the postmitotic assembly of the nuclear envelope and nuclear pores. (A) 2D time lapse of a mitotic HeLa cell expressing GFP-Sec61β and IBB-tomato acquired during nuclear envelope assembly (also see Video 7). Anaphase onset is at 0 s. At 660 s, imported IBB was clearly visualized next to the rim of the chromosome mass (arrows), at a time when assembly of the nuclear envelope is still incomplete as highlighted by the gap between the arrowheads. Key events were obtained by quantification of the Sec61β and IBB fluorescence signals. Bar, 10 µm. (B) Schematic summary of the relative kinetics of nuclear envelope formation and nucleoporin recruitment. The plots represent the fluorescence intensity associated with formation of the nuclear envelope (Sec61β, green; Fig. S1 B), recruitment of Nup133 (yellow; Fig. S1 C), recruitment of Nup62 (blue; Fig. S1 D), and import of IBB (red; Fig. S1 E). (C) Working model for the postmitotic assembly of the nuclear envelope and nuclear pores. ER is shown in light green; nuclear envelope (NE) is shown in dark green; yellow dot shows Nup107–160 complex; magenta dot shows remaining component of the nuclear pore; red square shows IBB; Chrom., chromosome mass.
mass to generate the nuclear envelope (Anderson and Hetzer, 2007, 2008; Anderson et al., 2009). Such a direct role for ER tubules is unlikely, considering their relative scarcity with respect to the cisternal ER and in view of the observations described in this paper. In an in vitro nuclear envelope membrane reconstitution assay, they found that a network of preformed ER tubules is the source for newly assembled nuclear envelope membrane (Anderson and Hetzer, 2007). It remains to be established, however, whether such an in vitro preparation can represent the in vivo mechanism with fidelity. We propose that extended ER cisternae are the main membrane source for the mitotic biogenesis of the nuclear envelope membrane. Reticulons are proteins that partition preferentially to highly curved ER membranes and are depleted from the low curvature nuclear envelope membrane. Overexpression of reticulons has been reported to deplete ER cisternae and stabilize ER tubules (Voeltz et al., 2006). Indeed, our model is consistent with a previous finding showing delayed nuclear envelope formation in cells overexpressing reticulons and an accelerated formation in cells depleted of reticulons (Anderson and Hetzer, 2008). It is also known that interaction of nuclear membrane proteins with the chromatin helps provide the driving force for membrane migration (Anderson et al., 2009); it is possible that presence of abnormally high amounts of reticulons on the growing nuclear envelope membrane slows this process. Finally, it has been argued that tubular ER is the source for the nuclear envelope membrane because of its observed abundance in thin-section EM of chemically fixed mitotic cells (Puhka et al., 2007). We have shown, however, that in cells undergoing mitosis, most of the ER becomes an interconnected network of cisternae conspicuously lacking tubules and that the chemical fixation normally used to visualize EM results in cisternal fenestration and apparent tubulation (Lu et al., 2009).

Evidence in favor of a preprote model comes indirectly from in vitro studies (Comings and Okada, 1970; Maul, 1977; Sheehan et al., 1988; Bodoor et al., 1999; Walther et al., 2003; Antonin et al., 2005) and from more recent evidence by live-cell imaging (Dultz et al., 2008). In their live-cell imaging study, Dultz et al. (2008) used ensemble measurements to follow the accumulation of the Nup107–160 complex tagged with GFP×3-Nup 133 and of the membrane-bound nucleoporin POM121 on the surface of the chromatin mass. They observed that the onset of Nup133 accumulation precedes, by a few minutes, the recruitment of POM121 by calibrating the recruitment kinetics of these nucleoporins with respect to the nuclear import of IBB (Dultz et al., 2008). Direct association of soluble nucleoporins with the nuclear membrane would be possible even if POM121, gp210, or NDC1 has not yet been recruited because mammalian Nup133 and yeast Nup53 and 59, components of the Nic96 scaffold complex, can associate with liposomes in vitro (Drin et al., 2007; Patel and Rexach, 2008). In agreement with this possibility, it has now been shown, using knockdown approaches, that embryonic large molecule derived from yolk sac (ELYS), but not POM121, plays a critical and essential role in the recruitment of the Nup107–160 complex to chromatin and in the assembly of postmitotic nuclear pores (Rasala et al., 2006, 2008; Franz et al., 2007; Gillespie et al., 2007; Doucet et al., 2010). These observations do not exclude the possibility that POM121 can be nucleated to regions already containing Nup107–160. Doucet et al. (2010) also showed that during interphase, POM121, but not ELYS, is essential for nuclear pore assembly. Indeed, the recent live-cell imaging by Dultz and Ellenberg (2010), performed with a time resolution of 5–15 min using interphase cells simultaneously expressing fluorescently tagged POM121 and Nup133, showed that recruitment of POM121 to a forming nuclear pore precedes the arrival of Nup133. The kinetics of postmitotic pore formation was ~10 times faster than with compared with the formation of nuclear pores during interphase.

Our data, based on single-particle tracking calibrated for fluorescence intensity, do not support the preprote model. We find that the nuclear envelope membrane, labeled by Sec61β, is always present at sites of Nup133 assembly. The fluorescence signal of GFP×3-Nup 133 associated with chromatin devoid of nuclear membrane always corresponded to nonsassembled single units, in agreement with recent electron microscopy observations showing association of single Nup107–160 complexes with chromosome masses in vitro (Rotem et al., 2009). In contrast, postmitotic Nup107–160 assemblies associated with the nascent nuclear membrane contained approximately four GFP×3-Nup 133, which we interpret as single nuclear pores. This assignment is consistent with the replacement of endogenous Nup133 with GFP×3-Nup 133, the value expected after reassortment of Nup133 after mitotic dissolution and reassembly from fluorescently tagged and nontagged interphase nuclear pores.

An insertion model for the postmitotic assembly of nuclear pores has the conceptual advantage of unifying the mechanisms of postmitotic and interphase pore formation. We can combine the results reported here with published observations to propose a more specific picture (Fig. 8 C). In particular, we suggest that insertion is a symmetrical process, involving apposition of Nup107–160 complexes on both inner and outer nuclear membranes, corresponding to the symmetrical arrangement of the two eightfold rings of these complexes in the mature structure. During early anaphase, individual Nup107–160 complexes associate with the chromosome mass through an interaction mediated by ELYS. In midanaphase, a double membrane derived from ER cisternae adheres to the chromosome mass and begins to spread over its surface. Prerecruitment of Nup107–160 ensures that a set of these complexes will be present on the nuclear side of the nascent nuclear envelope and indicates that at least part of the insertion process comes from within. The presence of POM121 (or another membrane–bound protein that remains to be determined) on the inner nuclear membrane can help cluster Nup107–160 complexes into higher order ring structures, corresponding to early stages of pore formation. A similar process, nucleated by POM121 on the outer membrane, can recruit Nup107–160 from the cytosol into rings on the outer membrane. Pore formation then requires apposition of inner and outer membrane rings and localized luminal membrane fusion. The spacing between inner and outer nuclear membranes is 30–50 nm, and the luminal tail of POM121 is too short (~30 aa) to be the driving force for fusion. Transient interaction of the POM121 tails with an intraluminal protein yet
to be determined might bring together the two membranes at the position of an inner Nup107–160 ring, help nucleate a corresponding POM121/Nup107–160 ring on the outer membrane, and potentially “snap” together the two rings, driving membrane fusion within them. During interphase, a comparable process probably would require the import of the Nup107–160 complex through existing nuclear pores.

Materials and methods

Plasmids

The expression vectors encoding Sec61β in pAcGFP1-C1, Sec61β in pmCherry-C1, tubulin in pmCherry-C1, IBR in pAcGFP1-N1, reticulon4a (Rtn4HD) in pAcGFP1-C1, emerin in pEGFP-N1, and pBABE X-H2B-mRFP1 have been used as previously described (Lu et al., 2009). Sun2-GFP was a gift from B. Burke (Institute of Medical Biology, Singapore). GFP-Nup37 and GFP-Seh1 were gifts from I.M. Cheeseman (Whitehead Institute, Massachusetts Institute of Technology, Boston, MA).

To clone H2B into pmCherry-N1, pBOS-H2B-GFP (BD) wasdigested with Sall–BamHI and then ligated into pmCherry-N1 (Takara Bio Inc.). To construct GFP-Nup133, the pEGFP-C1 vector (Takara Bio Inc.) was first modified to introduce a NolI site between the SacI and BamHI sites. The coding sequence of human Nup133 was obtained from the IMAGE (Integrated Molecular Analysis of Genomes) clone (available from GenBank/EMBL/DDB) under accession no. BC021007) using SacI-NolI and ligated into the modified pEGFP-C1 vector using the same restriction sites. To construct Nup133 in pdTomato-C1, the plasmid Nup133 in the modified pEGFP-C1 was released with EcoRI–BamHI and then ligated into the pdTomato-C1 vector. To construct a triple GFP vector (pEGFPx3-C1), two copies of the coding sequence of EGFP were sequentially amplified by PCR and then inserted into the pEGFP-C1 vector using BgIII–HindIII and HindIII–EcoRI sites. To construct GFPx3-Nup133, the Nup133 fragment was released from pEGFP-Nup133 by EcoRI–BamHI digestion and subsequently ligated into pEGFPx3-C1 vector. To construct GFP-Nup62, the coding sequence of human Nup62 was released from the IMAGE clone (GenBank accession no. BC050717) using Sall–NolI and ligated into the modified pEGFP-C1 vector. Because the 5′ end sequence of the Nup62 fragment is not compatible with the reading frame of the vector, the 5′ fragment was removed by Xhol–EcoRI digestion and replaced by an Xhol–EcoRI-digested PCR product, which was generated by using primers 5′-GATCCTCAGGAGAAGC-3′ and 5′-CTGGCTCTAATCTCCCTGTGAGC-3′ and the Nup62 IMAGE clone as the template. To make the plasmid expressing IBB-tomato, the IBB of human importin-α was amplified from IBB-GFP (cloned in pEGFP-N1), and the PCR product was annealed and ligated into the modified pEGFP-C1 vector. To make the plasmid expressing mCherry with the C-terminal CAAX motif for plasma membrane localization, primers 5′-AATTACGCGTCTAGATGCGCTCAAGGACG-3′ and 5′-GATCCTCAAGGAGGAGGACG-3′ were annealed and ligated into pmCherry-C1 at EcoRI and BamHI sites. All constructs were verified by DNA sequencing.

Reagents and cell culture procedures

Nocodazole and taxol were purchased from Sigma-Aldrich. Cell culture and transfection procedures were conducted as previously described (Lu et al., 2009). In brief, HeLa, BSC1, 293, and IEC6 cells were grown in DMEM supplemented in 10% fetal bovine serum at 37°C and in the presence of 5% CO2. Transient transfection in HeLa BSC1, or 293 cells of the proteins was performed using Lipofectamine 2000 (Invitrogen). 3 h after transfection, the cells were replated in small Petri dishes containing a glass coverslip (no. 1.5; MatTek Corporation) and allowed to grow for at least two additional cells. Statistical analysis was performed using OriginPro8 software (OriginLab).

Fluorescence imaging

Live-cell spinning-disk confocal microscopy in 2D and 3D was performed as previously described (Lu et al., 2009). Cells grown on the glass-bottom Petri dish were imaged using CO2-independent medium (Invitrogen) supplemented with 10% fetal bovine serum and 2.5 mM glutamine. The Petri dish was placed in an enclosed environment chamber surrounding the microscope stage set to 37°C. The fluorescent images were acquired using a Marianas system with control of SlideBook (version 4.0; Intelligent Imaging Innovations). The system was based on an inverted motorized microscope (Axiovert 200M; Carl Zeiss) equipped with a 63×, NA 1.4 Plan Apochromatic objective (Carl Zeiss), a piezo-driven stage (Applied Scientific Instrumentation), a spinning-disk confocal head (CSU22; Yokogawa), a computer-controlled spherical aberration correction device (Infinity Photonic Optical), and an electron-multiplying charge-coupled camera (Cascade 512B; Photometrics) set to speed = 1, gain = 3, and amplification = 4095. Each pixel on the final imaged mapped to 0.093 × 0.093 μm. The samples were illuminated with 50-mW solid-state lasers whose emission wavelengths were centered at 472 and 561 nm; each frame corresponding to a dual-wavelength acquisition was acquired sequentially at 472 and 561 nm using an acousto-optic tunable filter for wavelength selection. Unless indicated otherwise, the exposure time was ~100 ms per wavelength. 2D time series were acquired every 5–30 s. 3D z stacks were acquired every 5 μm with steps of 0.1–0.28 μm. The distance between the sample (water) and the immersion oil generates an apparent elongation of the image along the z axis, which was corrected using a factor of 0.7 calculated by imaging fluorescent spherical beads of 1.5 μm in diameter (Invertirho; Ferko et al., 2006). All z distances have been corrected accordingly.

Image analysis

Image filtering, segmentation, morphometry, and determination of fluorescence intensity were performed using SlideBook version 4.0. Image restoration by 3D deconvolution was performed using Huygens Essential software (version 3.3; Scientific Volume Imaging). Nuclear envelopes was performed on deconvolved 3D image stacks of cells expressing Sec61β and H2B on a 3D mask defined by the segmented signal of H2B (see Fig. S1 A for an example). The mask was dilated by 4 pixels, converted to a binary 3D image, and then multiplied logically to the Sec61β signal. 3D rendering was performed using Velocity software (version 2.6.3; PerkinElmer). 2D time lapses of live cells and 3D image stacks of fixed cells were Gaussian filtered ($\sigma = 1$ pixel). For quantitative analysis, 2D time lapses were background subtracted and corrected for photobleaching. The data from each time point was normalized and plotted against time. In Fig. 2, the mask of the nuclear envelope was manually traced along a rim region where the enrichment of IBB-GFP or the depletion of GFP-Sec61β occurred. The mask of the ER was defined as a segment of GFP–Sec61β–labeled ER membrane profile outside the central cavity. In Fig. 5 (A and B), masks were segmented using H2B-mCherry intensity or manually drawn over cytosol region, and mean intensities of Nup133 and Nup62 at both masks were obtained subsequently. For Nup133, kinetochores were manually removed from the chromosome mass mask. In Fig. S1, various dynamic processes were analyzed using 2D time lapses. To analyze the nuclear envelope recruitment in Fig. S1 B, a binary mask of the chromosome mass is first generated by segmenting H2B-mCherry intensity and subsequently dilated by 5 pixels as illustrated in Fig. S1 A. The nuclear envelope mask is selected by logically multiplying the GFP–Sec61β image with the binary mask. The GFP–Sec61β fluorescent intensity within the nuclear envelope mask was summed at each time point and used as the relative amount of recruited nuclear envelope membrane. To analyze the recruitment of Nup133 or Nup62 in Fig. S1 C (A and B), respectively, a mask was generated by segmenting GFP–Nup133 or Nup62 signal during nuclear envelope assembly, and the summed intensity was used as the relative amount of recruited neucloporin. To analyze the import of IBB in Fig. S1 E, masks of chromosome masses were manually traced at each time point using the IBB-tomato image by taking advantage of the contrast between the chromosome mass and cytosol. In contrast to the cytosol, the chromosome mass appeared dark before IBB import and bright after the import. The relative amount of imported IBB was obtained by summing IBB intensity within the chromosome mass mask. Each printed image is a representative example of the experiment obtained from a single cell. Confirmatory data (unpublished data) was obtained by imaging at least two additional cells. Statistical analysis was performed using OriginPro8 software (OriginLab).

Calibration of single GFP and GFPx3 fluorescence intensities

BSC1 cells stably expressing a z2-GFP (cloned in pEGFP1-N1) component of the endocytic clathrin heavy chain complex (Mishina et al., 2004), or HeLa cells transiently expressing GFPx3 (pEGFPx3-C1) were broken by repeated extrusion through a 27-gauge needle. The lysate was centrifuged at 100,000 rpm at 4°C in a rotor (TLA-100; Beckman Coulter) using an ultracentrifuge (Optima TLX; Beckman Coulter). Diluted supernatant was applied to the top of a glass coverslip (no. 1.5), air dried, and mounted on a glass slide using Mowiol 488 (EMD) with 0.3% 1,4-diazabicyclo[2.2.2]octane (DABCO; Sigma-Aldrich), which was used as an antiphotoeleaching
Measurements of clathrin-mediated nuclear envelope formation in living cells

We thank Eric Marino for maintaining the imaging resource used in this study, Brian Burke and Iain M. Cheeseman for generously providing reagents, Silvia Tacheva and Steeve Boulant for help setting up the experiments with Nup62, and members of our laboratory for helpful discussions.

This work was supported by National Institutes of Health grants GM075252 (to J. Ellenberg), U54 AI057159 (New England Regional Center of Excellence in Biodefense and Emerging Infectious Disease, Core Imaging Facility), and SBS SUG M58080013 (to L. Lu).

Submitted: 10 December 2010
Accepted: 11 July 2011

References

