Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI

Citation

Published Version
doi:10.1073/pnas.0911792107

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:1341332

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI

Giulio Srbek Tomassya,b,1,2, Elvira De Leonibusb,c,3, Denis Jabaudonde,d,2, Simona Lodatoh,1, Christian Alfanoa, Andrea Meleb, Jeffrey D. Macklissc,3, and Michèle Studera,e,3

*Telethon Institute of Genetics and Medicine, Developmental Disorders Program, 80131 Naples, Italy; Laboratory of Psychobiology, Department of Genetics and Molecular Biology, University of Rome, 00185 Rome, Italy; 3Massachusetts General Hospital–Harvard Medical School Center for Nervous System Repair, Departments of Neurosurgery and Neurology, and Program in Neuroscience, Harvard Medical School, Nayeif Al-Rodhan Laboratories, Massachusetts General Hospital, and Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Boston, MA 02114; 4Department of Basic Neurosciences, and Clinic of Neurology, University of Geneva, Geneva, Switzerland; and 5Inserm U636, and Université de Nice-Sophia Antipolis, Laboratoire de Génétique du Développement Normal et Pathologique, F-06108 Nice, France.

Edited by Joshua R. Sanes, Harvard University, Cambridge, MA, and approved December 3, 2009 (received for review October 13, 2009)

Transcription factors with gradients of expression in neocortical progenitors give rise to distinct motor and sensory cortical areas by controlling the area-specific differentiation of distinct neuronal subtypes. However, the molecular mechanisms underlying this area-restricted control are still unclear. Here, we show that COUP-TFI controls the timing of birth and specification of corticospinal motor neurons (CSMN) in somatosensory cortex via repression of a CSMN differentiation program. Loss of COUP-TFI function causes an area-specific premature generation of neurons with cardinal features of CSMN, which project to subcerebral structures, including the spinal cord. Concurrently, genuine CSMN differentiate imprecisely and do not project beyond the pons, together resulting in impaired skilled motor function in adult mice with cortical COUP-TFI loss-of-function. Our findings indicate that COUP-TFI exerts critical areal and temporal control over the precise differentiation of CSMN during corticogenesis, thereby enabling the area-specific functional features of motor and sensory areas to arise.

The fate of neurons and laminar cytoarchitecture in each specific area determines their function: the adult primary motor cortex contains a large number of CSMN and has a thick layer V; the primary somatosensory area is characterized by a thick layer IV, where the neurons that receive relayed sensory inputs are located. The areal-specific differences in neuronal fate and cytoarchitecture have been thought to result from late postmitotic events, e.g. selective postnatal pruning of axons (11), and premitotic events, such as the timing, rate, and duration of proliferation of precursors producing distinct projection neuron subtypes (12–16). As a striking illustration of such processes, CSMN are generated at a higher rate in the developing motor cortex than in sensory areas in mice (12), but the molecular mechanisms that control this area-specific differential production of CSMN are not known. The transcription factor COUP-TFI is particularly interesting in this regard, because it is expressed at different levels in presumptive sensory and motor cortices, and could thus underlie the striking cytoarchitectural differences between these two cortical areas (17, 18). Using cortex-specific conditional loss-of-function of COUP-TFI, we have previously demonstrated that this transcription factor is critical for areal patterning by acting in sensory cortex to repress frontal/motor cortical area identity (17). COUP-TFI has also been shown to regulate neuronal differentiation (19) and, together with COUP-TFII, to control the timing of the switch of progenitor cells from neurogenesis to gliogenesis in the developing cortex (20). Given the dual function of COUP-TFI in neuronal and areal specification, we hypothesized that COUP-TFI might control sensory area formation by repressing a “motorizing” genetic program of differentiation in neurons of the somatosensory cortex.

We find this to be the case, and show that in the absence of COUP-TFI function, CSMN are born prematurely in somatosensory cortex, at a time when layer VI corticothalamic neurons are normally born. Layer V is expanded at the expense of layer VI, with a corresponding redistribution of neurons expressing CSMN-specific genes and projecting to the spinal cord. In the context of an aberrantly expanded motor cortex and a corticospinal tract consisting largely of the axons of abnormally specified corticothalamic neurons, adult COUP-TFI conditional mutant mice exhibit impaired fine motor skills, reinforcing the necessity for precision in both areal and temporal control of CSMN differentiation. Our results indicate a critical role for COUP-TFI in controlling the emergence of the area-specific cytoarchitectural and functional features of sensory and motor cortical areas during corticogenesis, via specific areal and temporal repression of a CSMN differentiation program in corticofugal neurons of the somatosensory cortex.

Results

COUP-TFI Regulates the Laminar Cytoarchitecture and the Molecular Identities of Corticofugal Neurons in Somatosensory Cortex. COUP-TFI is expressed in the caudal-most region of the telencephalic anlage as early as embryonic day (E) 9.5 before neurogenesis starts, and this high caudo-lateral to low rostro-medial expression pattern becomes very prominent at E13.5 during the peak period of CSMN production (Fig. S1). To investigate whether COUP-TFI might restrict the generation or specification of layer V CSMN in soma-
As sensory cortex, we analyzed the expression of selected CSMN-specific genes in the frontal/motor (motor) and parietal/somatosensory (S1) cortices in wild type (WT) and in the frontal motor and parietal/somatosensory motorized (mS1) area in COUP-TFI conditional mutant (CKO) mice (Fig. 1). The transcription factors Fezf2 and CTIP2 are specifically expressed at high levels by CSMN and related subcerebral projection neurons in layer V, and at much lower levels by corticothalamic neurons in layer VI (4, 6, 21). In WT mice, both Fezf2 and CTIP2 delineate a much broader and denser layer V in the motor cortex than in S1 (Fig. 1A, C, D, G, and H), reflecting area-specific differences in CSMN generation and differentiation (Fig. S2). In sharp contrast, in COUP-TFI CKO cortex, there is a dramatic increase in the number of high-level Fezf2- and CTIP2-expressing neurons in layer V, most pronounced in mS1 and visible as an area-specific thickening of layer V (Fig. 1B, F, and J). Interestingly, CTIP2 expression is strikingly increased in the most superficial layer VI neurons, called “mVI” throughout this study. We next used area-specific markers, such as Crim1, FOXP2, and Igfbp4, which, in WT cortex, are expressed in neurons of layer V in motor, but not in S1 cortex (4, 6) (Fig. 1 K, L, O, P, S, and T). These markers are ectopically expressed in layer V in mS1 (Fig. 1 N, R, and V), further confirming that loss of COUP-TFI function imparts motor-like characteristics to neurons in parietal cortex. FOXP2 and Igfbp4 are also expressed by layer VI neurons (4) (Fig. 1 O, P, S, and T), and their expression is strikingly reduced or abolished in layer VI (Fig. 1 Q, R, U, and V), further indicating that a subset of layer VI neurons differentiate abnormally in the absence of COUP-TFI function. Abnormal cytoarchitecture is confirmed by cresyl-violet histological analysis of COUP-TFI CKO cortex, which shows an expansion and abnormal morphology of layer V neurons in sensory areas, and a decrease in thickness of layer VI in both sensory and motor areas of COUP-TFI CKO mice (Fig. S3).

Taken together, these results indicate that, in the absence of COUP-TFI function, the number of neurons expressing high levels of CSMN markers in layer V of the motorized S1 is dramatically increased, at the expense of layer V1 neurons. Importantly, in the “genuine,” occipitally misplaced S1 and V1 mutant cortical areas, the pattern of CTIP2-expressing neurons is comparable to corresponding areas of WT animals (Fig. S4). Therefore, our data strongly suggest that COUP-TFI acts in an area-restricted manner on the differentiation of the two main classes of corticofugal neurons: corticothalamic and corticospinal motor neurons.

We next assessed expression of FOXP2, TBR1 (expressed by layer V1 neurons, including corticothalamic neurons) (22), and CTIP2 (strongly expressed only in CSMN) (4), to further investigate potential interactions in the differentiation pathways of corticothalamic neurons and CSMN in the absence of COUP-TFI function (Fig. 2). In P8 WT mice, FOXP2/TBR1 and CTIP2 are expressed by distinct subsets of neurons in layers VI and V, respectively, with only rare layer V1 and V neurons co-expressing both FOXP2 and CTIP2 or TBR1 and CTIP2 (Fig. 2A, G, H, J, P, and Q) (6). In striking contrast, the proportion of neurons co-expressing both FOXP2 and CTIP2 (2B) (FOXP2+CTIP2+; layer VI: WT 4.1 ± 1.2%; CKO 15.0 ± 3.3%); layer V: WT 13.4 ± 3.4%; CKO 47.2 ± 7.8%; P = 0.005 (Fig. 2F) (TBR1+CTIP2+; layer VI: WT 1.3 ± 0.3%; CKO 6.9 ± 1.5%; P = 0.02; layer V: WT 7.1 ± 1.5%; CKO 21.4 ± 6.3%; P = 0.002), indicating abnormal acquisition of mixed corticothalamic and CSMN identities by corticofugal neurons. Taken together, these data indicate that loss of COUP-TFI function leads to a failure of corticothalamic neurons and CSMN to differentiate along segregated molecular pathways, resulting in a large number of neurons with mixed corticothalamic and CSMN identities.

Next, we investigated the temporal course of expression of the neuron subtype-specific markers Fezf2, CTIP2, and TBR1 in WT and CKO cortex at E13.5 (the peak time of birth of CSMN) and at E16.5, when generation of corticofugal neurons is terminated. In the absence of COUP-TFI function, there is an expansion of the Fezf2- and CTIP2-positive populations at E13.5, which is matched with a reduction of the Tbr1-expressing cells (Fig. S5). This altered balance between Fezf2/CTIP2- and TBR1-positive populations is still present at E16.5, indicating that COUP-TFI is normally involved in the distinct differentiation of CSMN and corticothalamic neurons from early stages of corticogenesis, in accordance with its high expression levels in presumptive corticofugal neurons at prenatal stages (Fig. S1). Taken together, this suggests that in S1 cortex, COUP-TFI normally represses a CSMN differentiation program during generation of layer VI corticothalamic neurons and that, in the absence of COUP-TFI function, presumptive corticofugal neurons abnormally display cardinal molecular features of CSMN differentiation.

Abnormal Expression of CSMN-Specific Genes Motorizes Layer VI Corticofugal Neurons. We next investigated whether the abnormal expression of the transcription factors Fezf2 and CTIP2 directs the differentiation of neurons normally destined to become corticothalamic neurons into CSMN, and results in a shift in their axonal projections to subcerebral targets instead of to the thalamus. We retrogradely-labeled subcerebrally-projecting neurons from the cerebral peduncle via ultrasound-guided microinjections of FluoroGold in P2 mice, and performed the analysis at P6 (Fig. 3A and B). In striking contrast to WT mice, in which subcerebral projection neurons are sharply confined to layer V (Fig. 3E and G), the position of these neurons in COUP-TFI CKO mice includes mVI of mS1, where abnormal high CTIP2-expressing neurons are located (Fig. 3F, H, and I). This finding demonstrates that abnormal expression levels of CSMN-specific control genes in presumptive corticothalamic neurons initiate central features of CSMN differentiation, including subcerebral axonal targeting. Strikingly, retrograde labeling from the spinal cord (Fig. 3J) reveals that these abnormal subcerebral projection
neurons of mVI are the dominant corticofugal neuron population able to successfully send axonal projections to more caudal targets in the cervical spinal cord of COUP-TFI CKO mice (Fig. 3 N and P*); indeed, in layer V, genuine CSMN, which abnormally express high levels of Fezf2, CTIP2, FOXP2, and TBR1 (Figs. 1 and 2), send axons which reach the cerebral peduncle, but not the spinal cord. This finding indicates that transcriptional dysregulation in genuine CSMN in the absence of COUP-TFI function results in abnormal differentiation of CSMN.

Motorized Layer VI Neurons Project to Cervical, Thoracic, and Lumbar Spinal Cord. To better investigate the entire trajectories of subcerebral axons, we crossed WT and COUP-TFI CKO mutants with "CST-YFP" mice, which express YFP in corticofugal neurons (23) (Fig. 4). At P7, the trajectory of subcerebral projections is largely unaffected by loss of COUP-TFI function (Fig. 4 A–M*). However, COUP-TFI CKO mice develop a detectable decrease in cortico-lumbar projections by P21 (Fig. 4 N and O and Fig. S6), suggesting abnormal degeneration or area-specific pruning at later stages. Remarkably, this corticospinal connectivity primarily reflects axonal projections of the misspecified mVI neurons of the abnormally expanded motorized cortex, because the axons of genuine CSMN in layer V largely do not reach the cervical cord (Fig. 3 N–P*).

Taken together, these data indicate that COUP-TFI normally controls CSMN differentiation and cortical efferent connectivity, and that loss of COUP-TFI strikingly enables a subset of late-born corticothalamic neurons to establish corticospinal projections to cervical, thoracic, and lumbar spinal cord segments.
superficially located in layer VI) corticothalamic neurons, which are generated immediately before CSMN, raising the possibility that during corticogenesis COUP-TFI acts to control the timing of the transition between corticothalamic and corticospinal motor neuron generation. Thus, we first determined the date of birth of cortical/fugal neurons in COUP-TFI CKO mice by injecting BrdU from E11.5 to E13.5, the normal birth dates of corticofugal neurons (7, 24), and found that the laminar distribution of BrdU birth-dated cells is not distinguishable between WT and COUP-TFI CKO mice at P0 (Fig. S7). This indicates that the migration and the survival of corticofugal neurons are unaffected by the absence of COUP-TFI function. Next, we examined whether loss of COUP-TFI increased the probability of E12.5 BrdU birth-dated corticofugal neurons to strongly express CTIP2, taken as a bona fide index of CSMN differentiation (Fig. 5A–D). Loss of COUP-TFI function leads to a 2.5-fold increase in the number of E12.5-born neurons that strongly express CTIP2 in layer mVI (Fig. 5E) (WT, 43 ± 7%; CKO, 93 ± 2%; n = 3; P = 0.02), indicating that COUP-TFI normally acts to restrict CSMN specification during corticothalamic neurogenesis in S1 cortex. Strikingly, this control is exerted in an area-specific manner, because, in frontal/motor cortex, E12.5-born neurons are not more likely to strongly express CTIP2 in the absence of COUP-TFI function (Fig. 5E) (WT, 65 ± 6%; CKO, 83 ± 4%; n = 3; P = 0.07). Importantly, this area-specific premature generation of CSMN is limited to the time when corticofugal neurons are generated (Fig. S8). Together, these data strongly suggest that COUP-

COUP-TFI CKO Mice Have Impaired Skilled Motor Behavior. We next investigated how the increase in motor area size (17), and the reassignment of the corticospinal connectivity to layer VI corticothalamic neurons, might affect sensorimotor function in COUP-TFI adult mutant mice. We first investigated sensorimotor function by using an adhesive patch removal task (25), in which the mouse has to remove a piece of adhesive patch placed on each hindpaw. We find that COUP-TFI CKO mice are significantly less efficient in removing the patches than WT mice (Fig. 6A) (F_{1/19} = 13.635; P = 0.001; see also SI Methods). This decreased performance reflects impairment in motor function rather than reduced tactile perception, as COUP-TFI CKO mice readily detect the presence of the patch (as indicated by similar latencies in the first attempt to remove the patch) (Fig. 6B) (F_{1/19} = 0.145; P = 0.7). Once the patch is detected, COUP-TFI CKO mice make significantly more removal attempts than WT mice (Fig. 6C) (F_{1/19} = 21.382; P < 0.001), suggesting specific impairment in fine motor control.

Fig. 4. Cortico-subcerebral connectivity in COUP-TFI CKO mice. Schematic sagittal (A and A′) and coronal (A) views of the brain indicating location of the immunofluorescence photomicrographs shown in B to D along the corticospinal corticocortical pathways (green) and obtained in CST-YFP WT and COUP-TFI CKO mice. At P7, corticofugal axons in WT and COUP-TFI CKO mice fasciculate compactly within the cerebral peduncles (arrowheads in B and C), the pons (arrowheads in D and E), and tectum (arrowheads in F and G), and decussate normally in the medulla oblongata (H, I, and open arrowhead in D and E). Within the spinal cord (U–O), the corticospinal tract is compactly bundled within the dorsal funiculus (Dors funic) in the cervical cord (J), the medulla oblongata (K), and the pontine (L and M) and medullary (M′) regions. Arrowheads and open arrowheads indicate individual CST-YFP WT axons. Scale bars: 250 μm (B–K); 100 μm (L–O).
We further examined corticospinal motor function by employing a task that specifically tests corticospinal tract-mediated motor function, the single pellet skilled reaching task (26, 27). This test assesses the ability of rodents to perform a series of precise skilled movements of their forelimbs to retrieve food through a thin slot. We find that corticospinal motor function is dramatically impaired in COUP-TFI CKO mice, as indicated by a strikingly lower rate of pellet recovery compared to WT mice (Fig. 6F) (P = 0.005) (see also Movie S1). Importantly, however, in a motor task that does not require a forelimb-skilled behavior (see also Methods) (26, 27), COUP-TFI CKO mice and WT mice are indistinguishable (Fig. 6E) (P = 0.5), as they are in other behavioral tasks testing more general aspects of motor function, such as muscular strength and pure motor coordination (Fig. S9). These results demonstrate that, even in the presence of relatively preserved corticospinal connectivity, the imprecise areal and temporal specification of CSMN in COUP-TFI CKO mice critically impairs the function of the cortical neuronal networks controlling skilled motor behavior.

Discussion

In this study, we show that COUP-TFI plays a critical role in regulating the area-specific balance between corticothalamic neurons and corticospinal motor neurons. In the absence of COUP-TFI function, neurons that, in the S1 cortex, would normally differentiate into corticothalamic neurons, prematurely and abnormally differentiate as CSMN and send their axons to all segmental levels of the spinal cord. Furthermore, genuine CSMN neurons are abnormally differentiated and fail to project to the spinal cord, which results in impaired fine motor skills in COUP-TFI CKO adult mice. These data reveal that COUP-TFI exerts an area-specific control over a generic CSMN differentiation program during corticogenesis, and strongly indicate that precision in areal and temporal CSMN differentiation is fundamental for high-level motor function.

COUP-TFI Regulates the Areal- and Temporal-Specific Onset of Corticospinal Motor Neuron Specification. Our study has confirmed that COUP-TFI acts to precisely control the areal and temporal specification of CSMN during corticogenesis, and might, thus, contribute to the larger number of CSMN in motor compared to sensory areas (12). We have shown that loss of COUP-TFI function most severely affects late-born layer VIa corticothalamic neurons, located just below the large-sized pyramidal projection neurons in layer Vb (Fig. S10 A and B). Our findings suggest that these neurons could be “transitional” forms of corticofugal neurons expressing transiently overlapping gene determinants that normally are under precise molecular and temporal control of COUP-TFI. Interestingly, because corticothalamic neurons still project to distinct thalamic nuclei in the absence of COUP-TFI (17), the abnormal subcerebral projecting neurons in mVI may have thalamic collaterals or, alternatively, distinct populations of subcortical and subcerebral projecting neurons may coexist in this layer.

COUP-TFI is a Negative Regulator of a Genetic CSMN Differentiation Program. Several studies have demonstrated that the fate specification and differentiation of CSMN are under the control of a combinatorial set of transcription factors that can either induce or inhibit CSMN-specific genes during corticogenesis (8, 9, 21, 28, 29). In the present study, we provide evidence that COUP-TFI is an upstream negative regulator of a CSMN differentiation program in corticofugal neurons, through repression of a genetic program of CSMN differentiation. First, during the period of corticofugal neuron birth and specification, an increased number of Fgf2- and CTIP2-positive neurons in COUP-TFI CKO mice are generated; second, COUP-TFI-deficient neurons in layers V and VI express abnormally high levels of Fgf2, CTIP2, Crim1, and Igfbp4; third, gain-of-function of COUP-TFI in a transgenic model shows decreased expression of Fgf2 and other layer V markers (19). An especially interesting aspect of these results is the abnormal differentiation of genuine CSMN in layer V of COUP-TFI CKO mice, including failure of these neurons to send projections to the spinal cord. It is likely that abnormal expression of corticothalamic neuron genes during CSMN differentiation, and dysregulation of CSMN “control genes” centrally contribute to improper differentiation of these neurons. In support of this latter hypothesis, ectopic expression of Fgf2 and CTIP2 leads to altered axonal trajectories (6, 28), and dose-dependent effects of CTIP2 on CSMN differentiation have been reported (4, 8), indicating that precise levels of CSMN-specific genes are a fundamental requisite for correct differentiation of corticofugal neurons. Finally, because COUP-TFI and Fgf2 are both expressed in postmitotic neurons, it is possible that abnormal differentiation of CSMN and corticothalamic neurons in the absence of COUP-TFI occurs at a postmitotic level, as recently shown for other cortical transcriptional regulators (8, 30, 31, 32).

COUP-TFI-Dependent Precision of Corticospinal Neuron Differentiation Is Critical for Skilled Motor Behavior. In the present study, we found that, in the absence of COUP-TFI skilled motor function related to the sensorimotor cortex and corticospinal motor tract is substantially impaired. These behavioral data indicate that precise complement and connectivity of the distinct corticofugal neuronal populations is critical for proper motor function (27, 33). Genuine
CSMN in layer V do not project to the spinal cord in COUP-TFI CKO mice; however, these mice remarkably establish corticospinal projections to all segments of the spinal cord. Our retrograde tractings from the spinal cord demonstrate that the tract originates largely from the corticothalamic neurons in layer mVII within the abnormally expanded motorized cortex (17). Thus, these misspecified neurons may not be integrated into appropriate cortical motor neuronal networks, and therefore are unable to contribute to fine motor control. Interestingly, COUP-TFI CKO mice largely reproduce behavioral defects observed in rats after either specific corticospinal lesions or motor or somatosensory cortical ischemia (26, 27, 33, 34), emphasizing that dysregulation of precise CSMN development leads to deficits of high-level motor function and behavior.

Methods

Mice. COUP-TFI CKO mice were generated and genotyped as shown previously (17). For genetic labeling of the entire corticospinal motor tract, COUP-TFI CKO mice were crossed with Thy1-STOP-YFP mouse (23) (kind gift of J. Sanes). All experiments were conducted following guidelines of the Institutional Animal Care and Use Committee, Cardarelli Hospital, Naples, Italy, and in accordance with institutional and federal guidelines of the Massachusetts General Hospital IACUC.

Immunocytochemistry, In Situ Hybridization, and Histology. Brains were treated and processed for free-floating and standard immunofluorescence protocols as described (4, 17). YFP detection was amplified with a GFP-specific antibody (1:1000 Chemicon) and whole-mount in situ hybridization and nonradioactive in situ hybridization were performed as described (17). Antisense RNA probes were labeled using a DIG-RNA labeling kit (Roche). For Nissl staining, sections were stained with 0.5% cresyl violet, as described (4).

Retrograde Labeling. Subcerebrally projecting neurons were retrogradely labeled via FluoroGold injections into the cerebral peduncle or spinal cord, at P2 and P3 under ultrasonic guidance (Vevo 660, VisualSonics), as described (4). Injected mice were collected at P6 or P7 and processed for immunocytochemistry. Each experiment was repeated at least three times and showed reproducible results.

BrdU Birth Dating. Timed pregnant females received a single i.p. injection of BrdU (50 mg/kg) at E11.5, E12.5, E13.5, or E15.5. Pups were collected at birth, processed for BrdU immunocytochemistry, and quantified as described (6).

Behavioral Analysis. For the adhesive patch removal task, an adhesive patch was placed on the dorsal surface of each hindpaw, then mice were released in the testing cage and observed for 240 s. Animals underwent three consecutive trials, with an intertrial interval of 60 min. The skilled reaching task was adapted in mice from studies in rats (27). The task consisted of three phases: habituation, unskilled reaching, and skilled reaching. More details of both tasks are available in SI Methods.

ACKNOWLEDGMENTS. We thank J. Sanes for the gift of the Thy1-STOP-YFP mice (to J.D.M.); R. Hevner for the TBR1 antibody; C. Minieri, A. De Maio, F. Russo, T. Yamamoto, and E. Sievert for technical assistance; G. Andolfi for genotyping; and M. Giordano for animal husbandry. This work was supported by the Italian Telethon Foundation, the European Community FP6 program under Grant LSHM-CT-2004-005139, and by the “Compagnia San Paolo,” Program of Neuroscience (to M.S.), and partially supported by grants from the U.S. National Institutes of Health (NS45223 and NS49533), the Harvard Stem Cell Institute, the Spastic Paraplegia Foundation, the Massachusetts Spinal Cord Injury research program, the Travis Roy Foundation, the Jane and Lee Seidman Fund for Central Nervous System Research, and the Emily and Robert Pearlstein Fund for Nervous System Repair (to J.D.M.). D.J. was partially supported by the Swiss National Science Foundation and the Novartis Foundation.