ER proteostasis disturbances in Parkinson's disease: novel insights

Citation

Published Version
doi:10.3389/fnagi.2015.00039

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:15034844

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
ER proteostasis disturbances in Parkinson’s disease: novel insights

Gabriela Mercado 1,2*, Valentina Castillo 1,2, Rene Vidal 1,3 and Claudio Hetz 1,2,4*

1 Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile, 2 Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile, 3 Neurounion Biomedical Foundation, CENPAR, Santiago, Chile, 4 Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA

Keywords: UPR signaling pathways, Parkinson disease, gene therapy, preclinical models, dopaminergic neurons, ER stress

Introduction

Parkinson’s disease (PD) is characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Proteostasis impairment at the level of the endoplasmic reticulum (ER) is emerging as a driving factor of dopaminergic neuron loss in PD. ER stress engages the activation of an adaptive reaction known as the unfolded protein response (UPR) to recover proteostasis or trigger apoptosis of damaged cells. The therapeutic potential of the UPR as a target has been recently validated using pharmacological and gene therapy approaches. A complex view is emerging where ER stress may have a dual role in PD, both in maintaining cell survival during initial stages of the diseases and trigger neuronal degeneration when the stress levels are sustained. Here we overview recent advances in determining the impact of ER stress to PD.

PD is a progressive neurodegenerative disease that affects movement control, characterized by the loss of dopaminergic neurons in the SNpc. In most PD cases the presence of intracellular inclusions, termed Lewy bodies (LBs) is observed, where fibrillar aggregates of α-Synuclein constitute a major component. Many cellular processes are altered in PD, including redox control, mitochondrial function, autophagy/lysosomal function, protein quality control mechanisms, and vesicle trafficking, among other processes. Accumulating evidence supports disruption in the secretory pathway as a triggering factor of proteostasis dysfunction in PD, mediating in part the selective degeneration of dopaminergic neurons (Chua and Tang, 2013; Mercado et al., 2013). Importantly, in addition to PD, ER stress is emerging as a relevant driver of most common neurodegenerative diseases (Hetz and Mollereau, 2014).

ER stress activates the UPR, a complex signaling transduction pathway that mediates cellular adaptation to restore ER function (reviewed in Ron and Walter, 2007; Hetz, 2012). In this article we discuss recent insights on the significance of ER stress as a driver of dopaminergic neuron loss in PD and the potential of targeting UPR components to augment the homeostatic capacity of the ER and reduce pro-apoptotic signals.

ER Stress Signaling

The UPR is a signaling network mediated by the activation of three stress sensors located at the ER membrane, including inositol requiring kinase 1α (IRE1α), activating transcription factor 6 (ATF6), and protein kinase RNA-like ER kinase (PERK) (Figure 1A). These UPR transducers control the expression of a variety of genes involved in almost every aspect of the secretory pathway, resulting in a reduction in the load of misfolded proteins at the ER. Activation of the UPR improves the efficiency of protein folding and quality control mechanisms, in addition to
enhance ER and Golgi biogenesis, protein secretion and the clear-
ance of abnormally folded proteins through the autophagy and
ER-associated degradation (ERAD) pathways. However, under
chronic ER stress UPR sensors shifts their signaling toward
induction of cell death by apoptosis (Urra et al., 2013).

IRE1α is an endoribonuclease that processes the mRNA
encoding the transcription factor X-Box binding protein-1
(XBP1) which results in the expression of a more stable and active
transcription factor, termed XBP1s (Ron and Walter, 2007).
Upon activation, ATF6 traffics to the Golgi and undergoes sub-
sequent proteolytic processing to release ATF6f, an active tran-
scriptional factor (Ron and Walter, 2007). PERK is an ER-located
kinase that upon activation phosphorylates the eukaryotic initi-
tion factor 2α (eIF2α), attenuating general protein translation.
In turn, eIF2α phosphorylation leads to the specific translation
of activating transcription factor 4 (ATF4), which up-regulates
many important genes functioning in redox control, amino acid
metabolism and protein folding (Harding et al., 2003). Under
chronic stress, ATF4 regulates the expression of pro-apoptotic
genes such as CHOP.

ER Stress in PD

The mechanisms leading to ER stress in PD and the actual impact
of the UPR on the degeneration cascade are just starting to be
uncovered. A genetic screening in yeast revealed that one of the
major physical targets of αSynuclein is Rab1, an essential com-
ponent of the ER-to-Golgi trafficking machinery (Cooper et al.,
2006; Gitler et al., 2008). Over-expression of Rab1 in animal mod-
els of PD reduced stress levels and protected dopaminergic neu-
rons against degeneration (Coune et al., 2011). Importantly, the
generation of neuronal cultures from induced pluripotent stem
(iPSC)-derived from PD patients revealed major proteosta-
sis alterations (Chung et al., 2013). The authors provided evi-
dence indicating that ER stress is a salient molecular signature of
human PD neurons. There are many other studies linking other
PD genes with alteration of the secretory pathway, including
LRRK2, Parkin, Pael-R, DJ-1, ATP13A2 (reviewed in Mercado
et al., 2013), and VP535 (Zimprich et al., 2011). These reports
suggest that secretory pathway dysfunction is a common hall-
mark of PD, which may result in pathological levels of ER stress
contributing to the etiology of the disease.

The UPR and Cell Fate in PD

Genetic manipulation of essential UPR components in the con-
text of PD had been performed only in a few studies (Figure 1B).
For example, ATF6α knockout animals showed increased accu-
mulation of ubiquitin-positive inclusions and enhanced loss of
dopaminergic neurons induced by a PD-triggering neurotoxin
(Egawa et al., 2011). Although ATF6 is not essential for develop-
ment and survival of dopaminergic neurons in mice, this stress
sensor controls the levels of the chaperone BiP and ERAD com-
ponents under resting conditions in these neurons (Egawa et al.,
2011). A recent study determined that ATF6 is a direct target of
αSynuclein. Expression of αSynuclein was shown to inhibit the
processing of ATF6 through a physical association, leading to an
impaired up-regulation of ERAD genes, which sensitized cells to
apoptosis (Credle et al., 2015).

We recently reported a set of in vivo studies uncovering the
significance of the UPR transcription factor XBPI in con-
trolling the survival of dopaminergic neurons (Valdes et al.,
2014). We found that the developmental ablation of Xbp1 in the
nervous system preconditioned dopaminergic neurons and
rendered them resistant to the PD-triggering neurotoxin
6-hydroxydopamine (6-OHDA) (Figure 1B). This neuropro-
ective effect was accompanied by the up-regulation of several UPR
effectors in the SNpc of animals in the absence of pro-apoptotic
markers such as Chop. This phenotype correlated with the pre-
seence of poly-ubiquitinated proteins and large inclusion bodies
in dopaminergic neurons of Xbp1 deficient animals, resembling
the classical alterations observed in PD. Remarkably, dopami-
nergic neurons were prompt to undergo proteostasis alterations
in the absence of XBP1, a phenomenon not observed in other
brain areas including cortex, striatum, or spinal cord (Hetz et al.,
2009; Valenzuela et al., 2012; Vidal et al., 2012; Valdes et al.,
2014). We proposed that developmental targeting of XBPI provides
neuroprotection through an “ER-hormesis” mechanism where
the occurrence of mild non-lethal ER stress engages an adaptive
response that sustains neuronal function in the absence of XBPI,
which also renders dopaminergic neurons more resistant to a
PD-inducing stimulus. In agreement with this concept, establish-
ment of an ER-hormesis condition (Matus et al., 2012) by the
administration of low doses of the ER stress agent tunicamycin
on a rodent and fly model of PD selectively engaged adaptive UPR
signaling events involving the expression of XBPIs (Fouillet et al.,
2012).

Since genetic manipulations during development can lead to
compensatory mechanisms that mask the direct biological effects
of a certain gene, we then targeted XBPI in adult animals locally
at the SNpc (Valdes et al., 2014). Knocking down XBPI resulted
in chronic ER stress involving the up-regulation of Chop, caus-
ing spontaneous neurodegeneration of dopaminergic neurons
(Figure 1C). These results highlight the importance of XBPI in
sustaining dopaminergic neuron function and viability, reinforc-
ing the concept that ER stress is a factor underlying their differ-
tential neuronal vulnerability. Therapeutic strategy to artifi-
cially engage a UPR adaptive program has been developed to pre-adapt
dopaminergic neurons to a PD-inducing event. Using a gene
therapy approach, we delivered active XBPIs into the SNpc of adult
mice using adenov-associated viral (AAVs) vectors (Valdes et al.,
2014). This strategy conferred a dramatic protection against
6-OHDA (Figure 1C), in addition to reduce striatal denervation.
Similarly, a previous report also indicated that XBPIs gene trans-
fer also protects dopaminergic neurons against the PD-inducing
neurotoxin MPTP (Sado et al., 2009).

XBPI has a conserved role in sustaining dopaminergic neu-
ron survival. Recently, the over-expression of XBPI was shown to
protect against αSynuclein-induced dopaminergic neuron degen-
eration in C. elegans, whereas neuron-specific RNAi knockdown
of xbp1 exacerbates the neurodegeneration process (Ray et al.,
2014). The unconventional splicing of XBPI mRNA, in addition
to require the endoribonuclease IRE1α, it involves the RNA lig-
ase RTCB-1. This ligase also confers protection to dopaminergic

Frontiers in Aging Neuroscience | www.frontiersin.org 2 March 2015 | Volume 7 | Article 39
neurons against α-Synuclein overexpression in *C. elegans*, uncovering for the first time a functional relationship between XBP1 and its ligase in the regulation of proteostasis in neurons (Ray et al., 2014). XBP1 expression has been shown to be neuroprotective also when it is delivered into neural stem cells that are then transferred into the brain. This strategy, increased the
survival of the graft and improved the motor performance in a rotenone-induced rat model of PD (Lihui et al., 2012). Finally, an AAV-based gene therapy strategy to enhance the folding capacity of the ER was also evaluated on a genetic model of PD (Gorbatyk et al., 2012). Thus, increasing evidence indicates that the local modulation of the UPR in the nigrostriatal circuit may have important therapeutic potential in PD.

The UPR is a double-edged sword, cytoprotective when activated to a moderate extent, but degenerative when it is sustained over time. Markers of PERK/eIF2α activation have been found in PD post-mortem brain tissue, where nigral dopaminergic neurons displaying αSynuclein inclusion are also positive for phosphorylated PERK and eIF2α (Hoozemans et al., 2007). Deletion of the pro-apoptotic factor CHOP protects dopaminergic neurons against 6-OHDA and MPTP (Silva et al., 2005) (Figure 1B). Several strategies are now available to modulate PERK signaling in different disease contexts, including inhibitors of PERK activity, eIF2α phosphatases, and ATF4 expression (reviewed in Hetz et al., 2013). Salubrin, a small compound that enhances eIF2α (Boyce et al., 2005), was shown to delay disease onset and attenuate motor deficits induced by αSynuclein over-expression (Colla et al., 2012). Unexpectedly, although salubrin treatment attenuated disease symptoms, its administration did not protect dopaminergic neurons from degeneration (Colla et al., 2012). In the last 2 years, new exciting findings implicate the PERK/ATF4 signaling branch of the UPR as an interesting target to treat neurodegenerative diseases (Halliday et al., 2014). In this scenario, additional tools are available to systematically test the consequences of inhibiting the PERK pathway in PD models at the level of PERK, eIF2α, or ATF4, respectively.

References

Perspective

Many important questions remain to be solved in this growing field. Since distinct UPR signaling branches could have specific and even opposite consequences on neuronal survival depending on the disease input (Hetz and Mollereau, 2014), a systematic approach is needed to determine what are the optimal components of the UPR pathway as possible targets to develop future therapeutic interventions. Gene therapy strategies are currently been developed in PD patients and the first results of phase I and II clinical trials are available showing excellent safety profiles (Coune et al., 2012). In this context, the possible therapeutic potential and side effects of delivering active UPR components into the SNpc in the long term remains to be determined in non-human primates since most of the available studies only used rapid-evolving PD rodent models. Another interesting aspect to explore in the future is the cell-non-autonomous control of the UPR in PD, which may propagate protective responses to other brain areas and tissues (Mardones et al., 2015). Overall all these novel insights have placed ER proteostasis in the center of the etiology of PD, which may translate in the near future into the development of prototypic strategies to alleviate dopaminergic neuron loss.

Acknowledgments

Funded by FONDECYT-11140738 (GM), FONDECYT-1140549 (CH) Michael J. Fox Foundation for Parkinson Research, The Frick Foundation, COPEC-UC Foundation, ACT1109, FONDEF D1111007, Millennium Institute P09-015-F. RV is supported by FONDECYT-1150608, VC is supported by CONICYT fellowship.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Mercado, Castillo, Vidal and Hetz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.