A Neural Dissociation Within Language: Evidence that the Mental Dictionary is Part of Declarative Memory, and that Grammatical Rules are Processed by the Procedural System

Citation

Published Version
doi:10.1162/jocn.1997.9.2.266

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:3600798

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
A Neural Dissociation within Language: Evidence that the Mental Dictionary Is Part of Declarative Memory, and that Grammatical Rules Are Processed by the Procedural System

Michael T. Ullman
Institute for Cognitive and Computational Science
Georgetown University

Suzanne Corkin
MIT

Marie Coppola
University of Rochester

Gregory Hickok
University of California, Irvine

John H. Growdon and Walter J. Koroshetz
Massachusetts General Hospital

Steven Pinker
MIT

Abstract

Language comprises a lexicon for storing words and a grammar for generating rule-governed forms. Evidence is presented that the lexicon is part of a temporal-parietal/medial-temporal "declarative memory" system and that grammatical rules are processed by a frontal/basal-ganglia "procedural" system. Patients produced past tenses of regular and novel verbs (looked and plagued), which require an -ed-suffixation rule, and irregular verbs (dug), which are retrieved from memory. Word-finding difficulties in posterior aphasia, and the general declarative memory impairment in Alzheimer's disease, led to more errors with irregular than regular and novel verbs. Grammatical difficulties in anterior aphasia, and the general impairment of procedures in Parkinson's disease, led to the opposite pattern. In contrast to the Parkinson's patients, who showed suppressed motor activity and rule use, Huntington's disease patients showed excess motor activity and rule use, underscoring a role for the basal ganglia in grammatical processing.

INTRODUCTION

Two capacities give human language its vast expressive power. One is a "mental lexicon" containing thousands of words, each a memorized, arbitrary sound-meaning pairing. The other is a "mental grammar" of generative rules that combine words into an infinite number of larger words, phrases, and sentences (Chomsky, 1965; De Saussure, 1959; Pinker, 1994). Previous evidence has suggested links between grammatical processing and left frontal cortex, including Broca's area, and links between lexical memory and left temporal and parietal cortex (Geschwind, 1965; Goodglass, 1993; Wernicke, 1874). The speech of aphasics with frontal (anterior) lesions is often "agrammatic," with a breakdown of sentence structure and the omission or misuse of grammatical morphemes, while access to content words such as verbs and nouns is less dramatically impaired (Damasio, 1992; Goodglass, 1993). Electrophysiological and functional neuroimaging studies have also implicated frontal regions in grammatical processing.
ganglia circuits are functionally segregated; each receives differed in ways other than their use of the ties. In this study we confirm the dissociation using a projects to frontal motor areas, while other circuits proj-
ect to other frontal areas. The different circuits have capacities is contrasted while other factors, such as complex-
ity, meaning and task demands, are held constant.

We also relate the dissociation to larger principles of neural organization. Cutting across the division of the brain into systems such as language and visual perception, there is an orthogonal division into two major kinds of memory systems (Cohen & Squire, 1980; Mishkin et al., 1984; Damasio & Damasio, 1992; Squire et al., 1993). One is a declarative memory system underlying the learning and storage of information about facts and events. It is subserved by a medial temporal circuit connected largely with neocortical areas in the temporal and parietal lobes, with the medial temporal components consolidating memories that are eventually stored in neocortex (Cohen & Squire, 1980; Mishkin et al., 1984; Squire et al., 1993; Suzuki & Amaral, 1994). The other is a procedural memory system for the learning and processing of motor, perceptual, and cognitive skills. It is subserved by basal ganglia circuits connected largely with frontal cortex (Cohen & Squire, 1980; Gabrieli et al., 1993; Heindel et al., 1989; Mishkin et al., 1984; Saint-Cyr et al., 1988; Squire et al., 1993). These parallel basal ganglia circuits are functionally segregated; each receives projections from particular ipsilateral cortical and subcortical areas, and projects via the thalamus to a particular ipsilateral frontal lobe area. Thus a "motor circuit" projects to frontal motor areas, while other circuits project to other frontal areas. The different circuits have similar synaptic organizations within the basal ganglia (Middleton & Strick, 1994; Alexander et al., 1990; Young & Penney, 1993).

Given that word forms are like facts in being arbitrary, and in possibly having storage sites in temporal and parietal regions, the temporal-parietal/medial-temporal declarative memory system may subserve words as well as facts and events. Given that rules are like skills in requiring the coordination of procedures in real time, and in possibly having neural loci in frontal regions, the frontal/basal-ganglia procedural system may process grammatical rules as well as motor and perceptual skills. Basal ganglia circuitry may project to Broca's area (Hoover & Strick, 1993; Preuss, 1995), raising the possibility that portions of the basal ganglia subserve grammatical processing (Lieberman et al., 1992), performing operations comparable to those done for motor programming. Damasio and Damasio (1992), noting the anatomical interconnections between cortical language areas and the basal ganglia, predict that "the basal ganglia serve to assemble the components of complex motions into a smooth whole, and it seems reasonable that they might perform an analogous function in assembling word-forms into sentences."

We tested this memory/rule dissociation by devising a task based on a simple linguistic system in which reliance on grammar and lexicon differs, while other factors are held constant. Regular (look-looked) and irregular (dig-dug) past tense forms of verbs are well-matched in complexity (one word), syntax (tensed), and meaning (past). But regular verbs are predictable in form (verb stem + ed), and new ones are constantly being added (faxed, moshed), whereas irregular verbs are unpredictable (compare sing-sang, fling-flung, brought), and constitute a fixed list. A simple theory is that irregular forms are memorized, and regular forms are generated by a rule. The rule comprises two operations: copying the stem, and adding a suffix. Regulars and irregulars interact as follows: Retrieval of an irregular blocks the rule (dug preempts digged); when an irregular is not successfully retrieved, the rule may be applied, resulting in "overregularization" errors such as digged.

Alternative theories have been proposed. In one, regulars and irregulars are both computed by rules (Chomsky & Halle, 1968; Halle & Mohanan, 1985), with memory compressed to the minimum information necessary. In another, regulars and irregulars are both computed by a connectionist associative memory, with all rules eliminated (Rumelhart & McClelland, 1986; MacWhinney & Leinbach, 1991). Recent evidence from the structure, processing, and acquisition of several languages has bolstered the memory/rule theory (Marcus et al., 1992; Marcus et al., 1995; Pinker, 1991; Pinker & Prince, 1988; Prasada & Pinker, 1993), although controversy persists, with some arguing that either an associative memory, or a set of rules, suffices (Hare & Elman, 1995; Ling & Marinov, 1993; Plunkett & Marchman, 1993). It is therefore important to confirm the memory/rule distinction in the form of a neural dissociation, and to use it to illuminate the functions of the major brain systems underlying language and their relation to overall brain organization.

If indeed (a) irregulars are stored words, (b) the temporal-parietal/medial-temporal declarative system underlies word memory, (c) regulars are rule-products, and (d) the frontal/basal-ganglia procedural system underlies the processing of rules, then the following double dissociations are predicted. Patients with impairments of lexical memory, or more generally, of declarative memory, from damage to temporal or parietal neocortex, should be worse at producing irregular past tense forms (dug) than regular ones (looked). They should also make "overregu-
larization" errors where the irregular fails to be recalled and the rule is applied instead (diggled). Finally, they should be able to apply the rule to novel verbs (plagged). In contrast, patients with impairments of rules, or of procedures in general, from damage to frontal cortex or the basal ganglia, should be worse at producing regular than irregular forms. They should not over-regularize. And they should be unable to apply the rule to novel verbs. In practice, these differences might be relative rather than absolute, because in a single patient a lesion could strike only a part of a brain system, both brain systems, or a brain system common to the three verb types.

Patients and control subjects read aloud randomly ordered sentence pairs, filling in the blank, such as: "Every day I dig a hole. Just like every day, yesterday I _______ a hole." Twenty sentence pairs contained irregular verbs, 20 contained regular verbs, and 20 contained novel verbs (Table 1). To measure lexical memory, we asked subjects to name 84 drawings of objects (Goodglass et al., 1983). To estimate the severity of any dementia, we gave them the Information, Memory and Concentration (IMC) subtest of the Blessed Dementia Scale (Blessed et al., 1968). Memory for facts and events was measured by the remote memory subsection of the IMC.

IMPAIEMENTS OF LEXICAL MEMORY

Alzheimer's Disease (AD) causes severe impairments in learning new, and remembering old, facts, events and words (Corkin, 1982; Nebes, 1989; Sagar et al., 1988), with relative sparing of the learning and processing of motor, perceptual, and cognitive skills (Beatty et al., 1994; Gabrieli et al., 1993; Heindel et al., 1989; Saint-Cyr et al., 1988). A majority of studies find AD patients relatively unimpaired at processing the syntax of sentences, suggesting that grammar is largely unaffected (Irigaray, 1973; Nebes, 1989; Schwartz et al., 1979). These dissociations may stem from the high densities of neurofibrillary tangles in medial and high-order temporal and temporoparietal regions, and low densities in the basal ganglia and in frontal cortical regions, including Broca's area (Arnold et al., 1991; Kemper, 1994).

<table>
<thead>
<tr>
<th>Task</th>
<th>Word Type</th>
<th>Stimuli</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Novel</td>
<td>spuffed, traffed, dotted, stoffed, cugged, slabbed, trabbed, podded, plagged, crogged vasked, prassed, broppped, appared, satchted, grushed, plammned, tuncched, scurred, scashed</td>
</tr>
<tr>
<td>PD Retest</td>
<td>Irregular</td>
<td>sent, spent, lent, *lost, dealt, felt, meant, kept, *slept, *sold told, *bound, found, held, heard, made, *rode, wrote, *ate, built, left</td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td>gained, planned, dined, *passed, sailed, failed, joined, stopped, *slipped, *rolled called, *frowned, owned, pulled, stirred, played, *showed, tried, *stayed, ruled, lived</td>
</tr>
<tr>
<td></td>
<td>Uninflected</td>
<td>saint, brand, grind, fast, shield, yield, faint, apt, script, mold cold, mound, fond, build, bird, aid, code, pride, shade, fold, gift</td>
</tr>
<tr>
<td>AA Reading</td>
<td>Irregular</td>
<td>fled, strode, clung, slid, swept, swore, lent, hid, drove, spent sent, bought, spoke, held, left, kept, felt</td>
</tr>
<tr>
<td></td>
<td>Regular</td>
<td>sighed, weighed, slowed, tied, slipped, owed, flowed, viewed, died, loved learned, stayed, prayed, tried, showed, used, seemed</td>
</tr>
</tbody>
</table>

Main past tense production task: One sentence was printed one per page. Subjects who misread a verb were asked to restart. If reading was laborious, sentences were read by the experimenters. Responses were transcribed during testing, and when unclear, from audiotape, with careful attention to final consonants of all words, inflected and uninflected. Remaining unclear cases were decided by blind judges. An item was counted as correct if it elicited only correct responses (ic, if a subject produced both correct and incorrect forms, the item was counted as incorrect). Four irregular items were excluded from the analysis: *good, *bought, *husbanded, *famous. These verbs are marked by an asterisk in the table.

Retest of the hypokinetic PD subjects: Mean In-transformed frequency of the past tense of the irregular verbs was 3.45; of the regular verbs, 3.51; of the uninflected forms, 3.34. The subset of six pairs of verbs was selected so that the regular members had slightly higher mean In-past-tense frequency (1.54) than the irregular members (1.38). These verbs are marked by an asterisk in the table.

Reading task for the Anterior Aphasics (AA): Mean In-past-tense frequency of the irregulars was 3.58, of the regulars, 3.42.
The predictions about dissociations between regular, irregular, and novel forms do not apply to AD patients across the board; they apply only to patients with severe memory deficits, as manifested in word-finding difficulties. Therefore the predictions may be tested in two ways. One test examines a correlation across an entire group of patients: the greater the word-finding difficulty, the greater the predicted difficulty inflecting irregular verbs (though not regular or novel verbs). The second test focuses on the subset of patients with the most marked word-finding deficits. They should have greater difficulty inflecting irregular than regular or novel verbs, and should make overregularization errors.

We tested 24 probable AD patients and 14 age- and education-matched control subjects (Table 2). Across the AD patients, difficulties remembering words correlated with difficulties remembering facts (r(22) = −.61, p < .001; all reported ps for rs and rs in this paper are one-tailed). As predicted, each of these measures correlated positively with difficulties inflecting irregulars, and correlated negatively with overregularization rates. They did not correlate with difficulties inflecting regular or novel verbs. This pattern held even when IMC dementia scores were partialled out (Table 4).

In the second test, the five patients with the greatest difficulty in remembering words (i.e., the most anomic patients, Tables 2 and 3) were selected. As predicted, they inflected irregular verbs (greatest demand on memory) less reliably than regular verbs. In an Analysis of Variance, the interaction between Irregular-Regular Verb and AD/Control yielded F(1,17) = 20.45, p < .005; with IMC dementia scores covaried out, F(1,16) = 14.14, p < .005. In a comparison of the anomic AD patients' performance on regular versus irregular verbs, with subjects as the error term, t(4) = 3.10, p = .018; with items as the error term, t(34) = 4.86, p < .001. The anomic AD patients also inflected irregular verbs less reliably than novel verbs (no demands on memory). For the four anomic AD subjects able to learn novel verbs, the interaction between Irregular/Novel Verb and AD/Control yielded F(1,16) = 7.22, p = .016; with IMC covaried out, F(1,15) = 11.72, p < .005. In a comparison of the anomic AD patients' performance on irregular versus novel verbs, with subjects as the error term, t(7) = 2.15, p = .035; with items as the error term, t(34) = 2.80, p < .005. The five anemic AD patients also produced more overregularizations (range 13–44% of responses, 29–86% of errors) than their controls, t(17) = 6.45, p < .005. A similar pattern has been documented in a nongrammatical domain: AD patients can be more impaired pronouncing or writing irregularly spelled words like yacht and pint, which depend on memory, than regularly spelled words like mint and novel ones like rint, which depend on rules (Balota & Ferraro, 1993; Schwartz et al., 1979; Warrington, 1975).

Posterior Aphasia is associated with word-finding deficits, particularly with content words such as verbs and nouns, in the absence of salient impairments in the articulation and syntactic structure of speech. It generally occurs with lesions (e.g., from strokes) in left temporal or temporo-parietal areas (Goodglass, 1993). We tested one posterior aphasic with a temporo-parietal lesion sparing frontal cortex and the basal ganglia, as well as medial temporal regions (Table 2). As predicted, he produced regulars, which are rule-dependent, more reliably than irregulars, which are memory-dependent (over items, t(34) = 1.56, p = .064). He also did well with novel verbs, and overregularized frequently. This pattern is similar to that of the AD subjects, but contrasts with that of the control subjects (Table 3).

We replicated the finding with a larger sample of five additional posterior aphasics with less circumscribed lesions (Table 2). These lesions always involved the temporal or parietal lobes, but had extensions to frontal or basal ganglia structures. All five were worse at producing irregular than regular past-tense forms (Table 3). A comparison of the means, with subjects as the error term, yielded t(4) = 3.03, p = .019; with items as the error term, t(34) = 2.06, p = .024. (The patients also did better with novel verbs than with irregulars, though this difference was not statistically significant.) The interaction between Irregular/Regular Verb and Prior Aphasia/Control was statistically significant: F(1,11) = 10.14, p = .009. In addition, the posterior aphasics produced more overregularizations (range 0–6% of responses, 0–50% of errors) than their controls, t(11) = 3.19, p < .005.

Like AD patients, posterior aphasics often have more trouble pronouncing irregularly spelled words than regularly spelled and novel ones (Patterson et al., 1985).

IMPAIRMENTS OF GRAMMATICAL RULES

Parkinson's Disease (PD) is associated with degeneration of dopaminergic neurons in the basal ganglia (substantia nigra), which causes high levels of inhibition of motor and other frontal cortical areas to which the basal ganglia circuits project. This is thought to explain the suppression of movements in PD patients (hypokinesia) (Young & Penney, 1993), and might account for findings suggesting impairments in the learning of motor, perceptual, and cognitive skills (Bondi & Kaszniak, 1991; Heindel et al., 1989; Harrington et al., 1991; Saint-Cyr et al., 1988). PD patients also appear to have difficulty with grammar. They have trouble understanding sentences (Grossman et al., 1992; Lieberman et al., 1992), and their spontaneous speech can be syntactically simple (Illes, 1989). In contrast, recognizing words, facts, and events remains relatively unimpaired (Growdon & Corkin, 1986; Lees & Smith, 1983; Sagar et al., 1988; Saint-Cyr et al., 1988). The PD pattern is thus complementary to that of AD. If the left basal ganglia project not only to left frontal motor areas, which underlie right-side movement, but also to left frontal areas subserving grammar, right-side hypokinesia should be associated with suppression of
Table 2. Patient Groups and Their Normal Control Subjects

<table>
<thead>
<tr>
<th>Most anomic</th>
<th>Full sample</th>
<th>Posterior lesion</th>
<th>Larger lesion</th>
<th>Most hypo-kinetic</th>
<th>Full sample</th>
<th>Frontal lesion</th>
<th>Larger lesion</th>
<th>Huntington's disease (HD)</th>
<th>Controls subjects (AD, PD)</th>
<th>Controls subjects (PA, HD)</th>
<th>Controls subjects (AA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>Age (µ)</td>
<td>74</td>
<td>73</td>
<td>49</td>
<td>56</td>
<td>72</td>
<td>69</td>
<td>59</td>
<td>60</td>
<td>45</td>
<td>74</td>
<td>48</td>
</tr>
<tr>
<td>Years educ. (µ)</td>
<td>14</td>
<td>15</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>16</td>
<td>14</td>
</tr>
</tbody>
</table>

Informed consent was given for all subjects.

Alzheimer's patients: Diagnosed as probable AD without complications according to NINCDS and NIA guidelines (Khachaturian, 1985; McKhann et al., 1984).
- Full sample: 21 native English speakers, 3 bilingual; 22 right-handed, 2 ambidextrous; 16 females.
- The 5 most anomic AD patients were defined as those with the worst object naming scores: from 7% to 43% (the other patients ranged from 46% to 92%, with a mean of 68%). 4 native English speakers, 1 bilingual; all right-handed; 4 females.
- AD control subjects: 11 native English speakers, 3 bilingual; all right-handed; 9 females.

Posterior aphasics: Patient JLU: A right-handed native English speaking male who suffered a stroke 9 months before testing. His lesion consisted of a small patchy area in posterior Wernicke’s area, and included posterior supramarginal gyrus, angular gyrus, and a small part of lateral occipital gyrus; medial temporal structures were spared. He had a low score on the Boston Naming Test, largely grammatical spontaneous speech, with some word-finding difficulty, and intact auditory comprehension.
- The larger sample of 5 posterior aphasics had less circumscribed lesions, not limited to temporal and tempo-parietal areas. They were all right-handed native English speakers, with left hemisphere strokes, classified as fluent aphasic with anomic by clinical diagnosis, the Boston Diagnostic Aphasia Exam (Goodglass & Kaplan, 1972), or the Western Aphasia Battery (Kertesz, 1982). 1. JHA: 60-year-old man, stroke 6 years before testing; occipito-parietal lesion involving supramarginal gyrus, angular gyrus, white matter deep to these areas, portions of superior parietal lobule and occipital lobes; small area of low density in middle frontal gyrus and white matter deep to it. 2. JMO: 64-year-old man, stroke 17 years before testing; lesion involving superior parietal lobule; frontal lobe spared. 3. HFL: 53-year-old man, stroke 7 years before testing; lesion involving head of caudate nucleus, putamen, globus pallidus, insula, deep white matter pathways, and temporal lobe. 4. WBO: 55-year-old man, aneurysm 3 years before testing; scarring involving left anterior temporal pole, extending superiorly into frontal lobe just medial to the inferior border of the occipital cortex; putamen, thalamus, caudate nucleus, insular cortex spared. 5. APE: 48-year-old woman; patchy temporo-parietal lesion involving the supramarginal gyrus, portions of angular gyrus, white matter deep to them, superior, middle and inferior temporal gyri, white matter deep to them, posterior portions of insular structures, putamen and globus pallidus; the frontal lobe was spared.
- Posterior aphasic control subjects: All right-handed native English speakers, 7 females.

Parkinson's patients: Diagnosed as having PD without complications by their primary neurologist; confirmed by neurologists from the Movement Disorders Unit at Massachusetts General Hospital. No patient was severely demented (IMC dementia score = <5). Hypokinesia was measured with 4 hand and foot movement subtests of the Unified PD Rating Scale.
- Full sample: 25 native English speakers, 3 bilingual; 26 right-handed, 2 ambidextrous; 6 females. 23 patients were receiving Sinemet. One additional patient was eliminated because of severe hyperkinesia, presumably from levodopa medication.
- The 5 most hypo-kinetic PD patients’ right-side hypokinesia scores ranged from 6.5 to 14 with a mean of 10; the scores of the remaining 23 PD patients ranged from 0 to 6 with a mean of 3. All 5 were native English speakers and right-handed; 1 was female.
- The AD control subjects served as the control group for the PD subjects.

Anterior aphasics: Patient FCL: A right-handed native English speaking male who suffered a stroke 18 years before testing. He had a large left dorsolateral frontal-lobe lesion including almost all of the inferior and middle frontal gyri, all of Broca’s area and underlying white matter, and the entire insula. The lenticular nucleus (putamen and globus pallidus) was compromised; the caudate nucleus was spared. A superior extension included the lower two-thirds of the premotor, motor, and somatosensory cortices, and underlying white matter and periventricular white matter. The temporal lobe and remaining parietal lobe were spared. He was classified as Broca’s aphasic by clinical diagnosis and the Boston Diagnostic Aphasia Examination (Goodglass & Kaplan, 1972).
- Six additional anterior aphasics were tested, but their lesions extended to temporal or tempo-parietal areas. Five of them did not perform the past-tense production task. Two of these were tested in the reading task.
- Anterior aphasic control subjects: All were right-handed native English speakers; 8 were female.
- Five anterior aphasics were given the past-tense reading task. All were right-handed native English speakers with left hemisphere strokes, classified as Broca’s aphasic by clinical diagnosis, the Western Diagnostic Aphasia Exam (Goodglass & Kaplan, 1972), or the Western Aphasia Battery (Kertesz, 1982). 1. FCL (see above). 2. CIG: 72-year-old woman, stroke 12 years before testing; large posterior frontal-lobe lesion including Broca’s area and surrounding structures, the entire insula, the putamen, and anterior supramarginal gyrus; sparing of remaining tempo-parietal and temporal areas, caudate nucleus and globus pallidus. 3. WRO: 52-year-old man, stroke 7 years before testing; large posterior frontal-lobe lesion including Broca’s area and surrounding structures, the insula, claustrum, putamen, and anterior segment of the superior temporal gyrus; parietal and remaining temporal lobes spared. 4. LDO: 65-year-old man, stroke 15 years before testing; frontal-temporal lesion including most of Broca’s area, with deep extension to the border of the frontal horn, as well as portions of the insula and basal ganglia, and extension into the temporal lobe, including Wernicke’s area, temporal isthmus, and anterior supramarginal gyrus. 5. PJ: 51-year-old woman, stroke 11 years before testing; lesion in the frontal lobe, and, to a lesser extent, the parietal and superior temporal lobes.

Huntington's patients: Diagnostic criteria were positive family history and clinical symptoms. HD symptoms, including chorea, were assessed with the Unified Huntington’s Disease Rating Scale (UHDRS) (The Huntington’s Disease Study Group, 1996).
- All were native English speakers; 15 were right-handed, 2 left-handed, 2 ambidextrous; 5 were female. One patient was taking a dopamine agonist, four were taking dopamine blockers, and two were taking GABAergic agonists. One additional patient was tested but was too dysarthric to yield scorable responses.
- The posterior aphasic control subjects served as the control group for the HD subjects.
Table 3. Past Tense Production and Reading

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Most anomic</td>
<td>Large lesion</td>
<td>Most hypo-kinetic</td>
<td>Frontal lesion</td>
<td>Larger lesion*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Verb Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irregular</td>
<td>(dig)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>(dug)</td>
<td>60 (7)</td>
<td>63</td>
<td>71 (9)</td>
<td>88 (7)</td>
<td>69</td>
<td>52 (10)</td>
<td>76 (5)</td>
</tr>
<tr>
<td>Overregularized</td>
<td>(digged)</td>
<td>27 (6)</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8 (2)</td>
</tr>
<tr>
<td>Multiple Suffix</td>
<td>(digged)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Syllabic Suffix</td>
<td>(dig-id)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>.4 (4)</td>
</tr>
<tr>
<td>Double Marked</td>
<td>(dugged)</td>
<td>0</td>
<td>6</td>
<td>2 (1)</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Ing-Suffixed</td>
<td>(digging)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>5 (5)</td>
<td>.4 (4)</td>
<td>0</td>
</tr>
<tr>
<td>Unmarked</td>
<td>(dig)</td>
<td>17 (9)</td>
<td>0</td>
<td>14 (8)</td>
<td>5 (4)</td>
<td>13</td>
<td>15 (5)</td>
<td>8 (3)</td>
</tr>
<tr>
<td>Overirregularized</td>
<td>(dag)</td>
<td>0</td>
<td>6</td>
<td>4 (4)</td>
<td>4 (3)</td>
<td>0</td>
<td>3 (2)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Distortion</td>
<td>(tug)</td>
<td>0</td>
<td>6</td>
<td>5 (2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No response</td>
<td>0</td>
<td>0</td>
<td>2 (1)</td>
<td>0</td>
<td>0</td>
<td>5 (3)</td>
<td>1 (1)</td>
<td>0</td>
</tr>
<tr>
<td>Other errors</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>13</td>
<td>24</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Regular</td>
<td>(look)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>(looked)</td>
<td>89 (6)</td>
<td>85</td>
<td>83 (6)</td>
<td>80 (9)</td>
<td>20</td>
<td>20 (8)</td>
<td>80 (6)</td>
</tr>
<tr>
<td>Multiple Suffix</td>
<td>(looked)</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 (4)</td>
</tr>
<tr>
<td>Syllabic Suffix</td>
<td>(look-id)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Ing-Suffixed</td>
<td>(looking)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>6 (5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unmarked</td>
<td>(look)</td>
<td>5 (5)</td>
<td>5</td>
<td>12 (7)</td>
<td>9 (7)</td>
<td>35</td>
<td>33 (10)</td>
<td>11 (3)</td>
</tr>
<tr>
<td>Irregularized</td>
<td>(lake)</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
<td>3 (3)</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Stem Distortion</td>
<td>(rooked)</td>
<td>1 (1)</td>
<td>0</td>
<td>1 (1)</td>
<td>2 (1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Word Intrusion</td>
<td>(booked)</td>
<td>0</td>
<td>0</td>
<td>2 (2)</td>
<td>0</td>
<td>0</td>
<td>.3 (3)</td>
<td>0</td>
</tr>
<tr>
<td>No response</td>
<td>5 (5)</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>10</td>
<td>8 (5)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Other errors</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>36</td>
<td>3</td>
<td>.4</td>
</tr>
<tr>
<td>Novel</td>
<td>(plag)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct</td>
<td>(plagged)</td>
<td>84 (9)</td>
<td>80</td>
<td>75 (12)</td>
<td>65 (6)</td>
<td>5</td>
<td>NA</td>
<td>72 (6)</td>
</tr>
<tr>
<td>Multiple Suffix</td>
<td>(plagged)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Syllabic Suffix</td>
<td>(plag-id)</td>
<td>0</td>
<td>0</td>
<td>1 (1)</td>
<td>1 (1)</td>
<td>0</td>
<td>NA</td>
<td>4 (3)</td>
</tr>
<tr>
<td>Ing-Suffixed</td>
<td>(plagging)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>Unmarked</td>
<td>(plag)</td>
<td>3 (3)</td>
<td>0</td>
<td>13 (9)</td>
<td>7 (5)</td>
<td>35</td>
<td>NA</td>
<td>11 (3)</td>
</tr>
<tr>
<td>Irregularized</td>
<td>(plag)</td>
<td>3 (3)</td>
<td>0</td>
<td>1 (1)</td>
<td>4 (3)</td>
<td>0</td>
<td>NA</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Stem Distortion</td>
<td>(pragged)</td>
<td>6 (2)</td>
<td>10</td>
<td>4 (2)</td>
<td>17 (4)</td>
<td>10</td>
<td>NA</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Word Intrusion</td>
<td>(planned)</td>
<td>1 (1)</td>
<td>10</td>
<td>5 (1)</td>
<td>9 (5)</td>
<td>5</td>
<td>NA</td>
<td>3 (1)</td>
</tr>
<tr>
<td>No response</td>
<td>5 (5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>NA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other errors</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>NA</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Object Naming | | | | | | | | |
| Correct | | 25 (6) | 58 | 69 (6) | 86 (4) | 65 | 49 (8) | 74 (6) | 89 (2) | 91 (2) | 89 (2) |

Percentage correct and suffixation errors (with standard errors in parentheses) for the past-tense production task (and, for the larger group of anterior aphasics, for the past-tense reading task). One of the anomic AD patients, 2 of the HD patients, and 1 of the 5 posterior aphasics were unable to learn novel verbs; group means for the AD, HD, and posterior aphasic groups for novel verbs were calculated over the remaining patients. Object naming scores were available for only 3 of the 5 anterior aphasics with larger lesions; the group mean is calculated from their responses. Percentages may add up to more than 100% because of rounding and because patients sometimes made more than one error for a given item.

Ullman et al. 271
rule programming, and therefore with difficulty producing rule-generated past-tense forms.

As with the AD patients, our predictions do not apply to all people diagnosed with the syndrome. They apply only to those with a sufficiently severe case of the relevant symptom, in this case hypokinesia. The predictions may be tested in two ways. One test examines a correlation across the entire group of patients: the greater the hypokinesia, the greater the predicted difficulty inflecting regular and novel verbs (though not irregular verbs). The second test focuses on the subset of patients with the most severe hypokinesia. They should have greater difficulty inflecting regular and novel verbs than irregular verbs, and should make fewer overregularization errors.

We gave 28 PD patients (Table 2) the same tests as the AD subjects, and rated their hypokinesia on the Unified PD Rating Scale (Fahn & Elton, 1987). Across the 28 patients, right-side hypokinesia (irrespective of left-side hypokinesia) correlated significantly with difficulties producing regular verbs, and with difficulties producing novel verbs, but not with difficulties producing irregular verbs. These findings remained even when IMC dementia scores were partialled out (Table 4). The role of the left basal ganglia in rule processing was underscored by the finding that this pattern of correlations with right-side hypokinesia remained when left-side hypokinesia was partialled out, while none of the correlations of past-tense performance with left-side hypokinesia was significant with right-side hypokinesia partialled out (Table 4).

In the second test, the five patients with the most severe right-side hypokinesia were selected (Tables 2 and 3). They inflected irregular verbs more reliably than they inflected regular verbs. In an Analysis of Variance, the interaction between Regular/Irregular Verb and PD/Control yielded $F(1,17) = 7.65, p = .013$; with IMC covaried out, $F(1,16) = 5.82, p = .028$. The hypokinetic PD group was marginally worse at regulars than irregulars: with subjects as the error term, $t(4) = 1.98, p = .059$; with items, $t(34) = 1.34, p = .095$. The control subjects showed the opposite pattern. The hypokinetic PD patients also performed better with irregulars than with novel verbs, which have the greatest demand on rule processing. The interaction between Irregular/Novel Verb and PD/Control yielded $F(1,17) = 21.03, p < .005$; with IMC covaried out, $F(1,16) = 20.10, p < .005$. The patients were significantly worse at inflecting novel verbs than irregulars: with subjects as the error term, $t(4) = 10.47, p < .001$; with items, $t(34) = 3.49, p < .001$. Though 12% of the irregular items elicited errors, none were overregularizations.

The PD and AD groups, since they are predicted to show complementary deficits in rules and lexicon, may be contrasted directly. The interaction between Irregular/Regular Verb and AD/PD was statistically significant, $F(1,18) = 13.13, p = .007$; with IMC covaried out, $F(1,7)$

Table 4. Correlations

<table>
<thead>
<tr>
<th>Patient group</th>
<th>Irregular (dug)</th>
<th>Overregular (dugged)</th>
<th>Regular (locked)</th>
<th>Novel (plagged)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Object naming (word remembering) $r(22) = .60, p < .005$</td>
<td>$r(22) = -.58, p < .005$</td>
<td>$r(22) = .25, p = .118$</td>
<td>$r(19) = .24, p = .152$</td>
</tr>
<tr>
<td></td>
<td>Object naming, with IMC dementia scores partialled out $r(21) = .53, p = .005$</td>
<td>$r(21) = -.45, p = .015$</td>
<td>$r(21) = .11, p = .304$</td>
<td>$r(18) = .08, p = .362$</td>
</tr>
<tr>
<td></td>
<td>Fact remembering</td>
<td>$r(22) = -.57, p < .005$</td>
<td>$r(22) = .55, p < .005$</td>
<td>$r(22) = -.31, p = .072$</td>
</tr>
<tr>
<td></td>
<td>Fact remembering, with IMC dementia scores partialled out</td>
<td>$r(21) = -.56, p < .005$</td>
<td>$r(21) = .44, p = .018$</td>
<td>$r(21) = -.17, p = .215$</td>
</tr>
<tr>
<td>PD</td>
<td>Right-side hypokinesia $r(26) = -.19, p = .161$</td>
<td>NA</td>
<td>$r(26) = -.72, p < .005$</td>
<td>$r(26) = -.71, p < .005$</td>
</tr>
<tr>
<td></td>
<td>Right-side hypokinesia, with IMC dementia scores partialled out $r(25) = -.16, p = .216$</td>
<td>NA</td>
<td>$r(25) = -.64, p < .005$</td>
<td>$r(25) = -.63, p < .005$</td>
</tr>
<tr>
<td></td>
<td>Right-side hypokinesia, with left-side hypokinesia partialled out $r(25) = -.04, p = .412$</td>
<td>NA</td>
<td>$r(25) = -.41, p = .016$</td>
<td>$r(25) = -.34, p = .040$</td>
</tr>
<tr>
<td></td>
<td>Right-side hypokinesia, with left-side hypokinesia and IMC dementia scores partialled out $r(24) = -.04, p = .420$</td>
<td>NA</td>
<td>$r(24) = -.40, p = .021$</td>
<td>$r(24) = -.33, p = .051$</td>
</tr>
<tr>
<td></td>
<td>Left-side hypokinesia, with right-side hypokinesia partialled out $r(25) = -.07, p = .355$</td>
<td>NA</td>
<td>$r(25) = -.14, p = .346$</td>
<td>$r(25) = -.24, p = .115$</td>
</tr>
<tr>
<td></td>
<td>Left-side hypokinesia, with right-side hypokinesia and IMC dementia scores partialled out $r(24) = -.07, p = .370$</td>
<td>NA</td>
<td>$r(24) = -.08, p = .357$</td>
<td>$r(24) = -.18, p = .190$</td>
</tr>
</tbody>
</table>
irregular-regular difference persisted (64% versus 21%; t(23) = 2.27, p = .017, with items serving as the error term).

To rule out frequency and articulatory effects, and to use an easier task that even patients with larger lesions could perform, we asked five agrammatic anterior aphasics (Table 2) to read aloud a randomly-ordered list of 17 regular and 17 irregular past forms matched pairwise for stem and past-tense frequencies and for final consonant structure (e.g., *slipped-swept*) (Table 1). Previous case studies on such aphasics (Badecker & Caramazza, 1987; Badecker & Caramazza, 1991; Marin et al., 1976) had found an advantage for reading irregulars over regulars, even when word frequency, length, and presence of common embedded words (*looked, dogma, cf. look, dog*) were controlled for. Each of our five patients also showed this difference (52% versus 20%; see Table 3). The difference was statistically significant with subjects as the error term, t(5) = 3.01, p < .005. All subjects showed the difference, ranging from 5 to 43 percentage points.

The PD patients' relative difficulty with the regulars was also not attributable to their lower frequencies. A subset of six regular verbs and six irregular verbs was selected from the matched set, such that the frequencies of the regular and irregular items, in addition to their final consonant structure, was equated. (In fact, the regular members had a slightly higher mean past tense frequency; see Table 1.) The advantage for irregulars persisted in this subset (92% versus 58%). All subjects showed the difference, ranging from 17 to 67 percentage points; the means were significantly different when tested with subjects as the error term, t(3) = 2.83, p = .033, and with items as the error term, t(5) = 3.16, p = .013.

Anterior Aphasia is characterized by "agrammatism" (omission or misuse of grammatical morphemes, and difficulty understanding sentences) and articulation problems, while access to content words such as verbs and nouns is often relatively spared. It is associated with lesions to Broca's area and adjacent left frontal peri-sylvian cortex, plus underlying white matter and the basal ganglia, though many patients diagnosed with anterior aphasia have much larger lesions (Damasio, 1992; Goodglass, 1993). We tested one agrammatic anterior aphasic whose lesion included frontal cortex and the basal ganglia but spared temporo-parietal and temporal regions (Table 2). As predicted, he was better at inflecting irregular verbs than regular verbs; the difference between means was statistically significant, t(34) = 3.29, p = .001, items within verb classes serving as the error term. He was also better at inflecting irregular verbs than novel verbs: t(34) = 5.29, p < .001. The patient never overregularized. This pattern is similar to that of the PD patients, but contrasts with that of the control, AD, and posterior aphasic subjects (Table 3).

The relative problem with regulars was not caused by their lower frequencies. In a frequency-matched subset (chosen by eliminating the five most frequent irregulars and the six least frequent regulars; see Table 1), the
looked. These errors occurred 6% of the time, and were made by nine of the patients (one at a rate of 76%, the others from 2–11%). In contrast, they were made 0.2% of the time by their control subjects, 1% of the time by the 24 AD patients, and 0.2% of the time by the 28 PD patients. The difference between the HD and control subjects was significant (Mann-Whitney U $\chi^2(1) = 3.64, p = .028$, one-tailed; nonparametric test used because of the outlier HD patient). These errors do not appear to be motor perseverations or exaggerations: irregular past forms ending with t or d (e.g., kept, bent) elicited no perseverations of the final consonant (kept, 0 out of 170 opportunities), and only one syllabic pronunciation (kept, 1 out of 51 opportunities). Across the HD patients, the chorea measure correlated significantly with the rate of producing overregularizations ($r(15) = .42, p = .047$), and with the rate of producing multiply or syllabically suffixed forms ($r_p(15) = .57, p = .009$; Spearman rank correlation used because of the outlier). This was also true when IMC dementia scores were partialled out (respectively, $r(14) = .48, p = .031$, and $r_p(14) = .54, p = .016$).

Although both the AD and HD patients overregularized, they are predicted to have done so for different reasons: deficient word-finding for the AD patients, but overactive rules for the HD patients. Unlike the five anomic AD patients, the HD patients' object-naming scores were close to those of their control subjects (Table 3), and, across all 17 HD patients, naming did not correlate with overregularization rates ($r(15) = -.24, p = .178$). A measure of overall disease progression (Shoulson & Fahn, 1979) did not correlate with chorea ($r(15) = .01, p = .478$), and the measure also did not correlate with rates of overregularization ($r(15) = -.13, p = .310$) or multiple and syllabic suffixing ($r(15) = .05, p = .421$). This suggests that it is the specific kind of lesion leading to chorea that also leads to overactive rule use. In sum, chorea in HD is associated with superfluous addition of -ed, as if the suffixing rule was too active, both to regular forms, which should have only one suffix, and to irregular stems, which should not have any. Because the -ed in overregularization errors (digged) is not present in correct irregular forms (dug), such errors cannot be attributed to motor perseverations or exaggerations of the -t or -d. This further suggests a role for the basal ganglia in the rule-programming system.

CONCLUSION

Patients with relative damage to temporal or parietal neocortex, and with general impairments of declarative memory (in Alzheimer's disease) or specifically of lexical memory (in posterior aphasia), had more trouble converting irregular verbs to their past tense forms than regular or novel verbs, and overgeneralized the suffix. Patients with relative damage to the frontal/basal-ganglia system, and with general impairments of procedures (in Parkinson's disease) or specifically of grammar (in anterior aphasia), showed the opposite pattern. These results support psycholinguistic theories that emphasize grammar and lexicon as distinct components over those that minimize or eliminate either, especially in the treatment of regular and irregular grammatical phenomena. Moreover, the findings extend the distinction between the temporal-parietal/medial-temporal declarative memory system and the frontal/basal-ganglia procedural system to the two major components of human language. Finally, one kind of basal ganglia lesion, which leads to the suppression of motor activity (in Parkinson's disease), also led to the suppression of rule use. In contrast, another kind of basal ganglia lesion, which leads to excess motor activity (in Huntington's disease), also led to excess rule use. This bears out Damasio and Damasio's (1992) hypothesis that basal ganglia circuitry contributes to grammatical rule processing in conjunction with frontal cortex, and suggests that the well-studied basal ganglia circuits underlying motor programming may play a comparable role in rule programming.

Acknowledgments

This study was supported by the McDonnell-Pew Center for Cognitive Neuroscience at MIT for M.U. and S.P., NIH Grant HD 18381 and NSF Grant BNS 91-09766 to S.P.; AG66050 and AGNS80117 to S.C.; AG05134 to J.G.; and DC00081 and AG10496 to Edgar Zurif. The work was carried out while M. Ullman was a McDonnell-Pew Postdoctoral Fellow in Cognitive Neuroscience in the Department of Brain and Cognitive Sciences (BCS) and the Clinical Research Center at MIT; M. Coppola was a Research Assistant at MIT; G. Hickok was a McDonnell-Pew Postdoctoral Fellow in Cognitive Neurosciences at BCS at MIT. We thank Joseph Locascio for statistical advice; Cheryl McSweeney for testing patients, Nina Dronkers, Sulochana Naidoo, Eleanor Safran, and Edgar Zurif for referring aphasic subjects, and Antonio Damasio and two anonymous referees for helpful comments.

Reprint requests should be sent to Michael Ullman, Institute for Cognitive and Computational Sciences, Georgetown University, 3970 Reservoir Road, NW, Washington, D.C. 20007. Phone: 202-687-6896. Fax: 202-687-0617. Email: ullmann@ gics.georgetown.edu

REFERENCES

This article has been cited by:

40. Nicholas Schiff, Urs Ribary, Fred Plum, Rodolfo Llinás. 1999. Words without Mind. *Journal of Cognitive Neuroscience* 11:6, 650-656. [Abstract] [PDF] [PDF Plus]