Acute Effects of Decaffeinated Coffee and the Major Coffee Components Chlorogenic Acid and Trigonelline on Glucose Tolerance

Citation

Published Version
doi:10.2337/dc09-0207

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4592060

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Acute Effects of Decaffeinated Coffee and the Major Coffee Components Chlorogenic Acid and Trigonelline on Glucose Tolerance

Aimée E. van Dijk, MSC 1
Margreet R. Olthof, PhD 1
Joke C. Meuse, MSC 1
Elin Seebus, MD 2
Rob J. Heine, MD, PhD 2
Rob M. van Dam, PhD 3,4

OBJECTIVE — Coffee consumption has been associated with lower risk of type 2 diabetes. We evaluated the acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance.

RESEARCH DESIGN AND METHODS — We conducted a randomized crossover trial of the effects of 12 g decaffeinated coffee, 1 g chlorogenic acid, 500 mg trigonelline, and placebo (1 g mannitol) on glucose and insulin concentrations during a 2-h oral glucose tolerance test (OGTT) in 15 overweight men.

RESULTS — Chlorogenic acid and trigonelline ingestion significantly reduced glucose (−0.7 mmol/l, \(P = 0.007 \), and −0.5 mmol/l, \(P = 0.024 \), respectively) and insulin (−73 pmol/l, \(P = 0.038 \), and −117 pmol/l, \(P = 0.007 \)) concentrations 15 min following an OGTT compared with placebo. None of the treatments affected insulin or glucose area under the curve values during the OGTT compared with placebo.

CONCLUSIONS — Chlorogenic acid and trigonelline reduced early glucose and insulin responses during an OGTT.

Diabetes Care 32:1023–1025, 2009

In prospective cohort studies, higher coffee consumption has been associated with a lower risk of type 2 diabetes (1,2). Associations have been similar for caffeinated and decaffeinated coffee (1,3–5), suggesting that coffee components other than caffeine have beneficial effects on glucose homeostasis. Coffee is a major source of the phenolic compound chlorogenic acid (6) and the vitamin B3 precursor trigonelline (7), which have been shown to reduce blood glucose concentrations in animal studies (5–8). This is the first study to investigate the acute effects of chlorogenic acid and trigonelline on glucose tolerance in humans.
Coffee components and glucose tolerance

Glucose and insulin concentrations during an OGTT following ingestion of chlorogenic acid, decaffeinated coffee, trigonelline, or placebo in 15 healthy overweight men

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Chlorogenic acid</th>
<th>Trigonelline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 min</td>
<td>5.7</td>
<td>5.5</td>
<td>5.6</td>
</tr>
<tr>
<td>30 min</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2*</td>
</tr>
<tr>
<td>60 min</td>
<td>7.7</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td>90 min</td>
<td>11.0</td>
<td>10.1</td>
<td>12.5</td>
</tr>
<tr>
<td>120 min</td>
<td>13.4</td>
<td>12.4</td>
<td>15.6</td>
</tr>
<tr>
<td>Insulin (pmol/l)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 min</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2*</td>
</tr>
<tr>
<td>30 min</td>
<td>7.7</td>
<td>7.0</td>
<td>9.0</td>
</tr>
<tr>
<td>60 min</td>
<td>11.0</td>
<td>10.1</td>
<td>12.5</td>
</tr>
<tr>
<td>90 min</td>
<td>13.4</td>
<td>12.4</td>
<td>15.6</td>
</tr>
</tbody>
</table>

Table 1—Glucose and insulin concentrations during an OGTT following ingestion of chlorogenic acid, decaffeinated coffee, trigonelline, or placebo in 15 healthy overweight men

CONCLUSIONS—In this randomized crossover trial in healthy men, chlorogenic acid and trigonelline ingestion led to significantly lower glucose and insulin concentrations 15 min after an oral glucose load but did not significantly reduce the OGTT insulin and glucose areas under the curve compared with placebo.

Trigonelline also resulted in significantly lower glucose (−0.51 mmol/l [95% CI −0.95 to −0.08]; P = 0.024) and insulin (−117.0 pmol/l [−196.5 to −37.4]; P = 0.007) concentrations at 15 min after the start of the OGTT compared with placebo. Decaffeinated coffee did not significantly change mean glucose or insulin concentrations at any of the time points following the OGTT, although the insulin concentration tended to be lower at 15 min. None of the treatments significantly changed the insulin or glucose area under the curve values (Table 1).

References

3. Clifford MN. Chlorogenic acids and other cinnamates: nature, occurrence and di...