Cognitive Function Is Disrupted by Both Hypo- and Hyperglycemia in School-Aged Children With Type 1 Diabetes: A Field Study

Citation

Published Version
doi:10.2337/dc08-1722

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4874772

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Cognitive Function Is Disrupted by Both Hypo- and Hyperglycemia in School-Aged Children With Type 1 Diabetes: A Field Study

LINDA A. GONDER-FREDERICK, PHD
JOHN F. ZREBIEC, MSW
ANDREA U. BAUCHOWITZ, PHD
LEE M. RITTERBAND, PHD

Joshua C. Magee, MA
Daniel J. Cox, PhD
William L. Clarke, MD

OBJECTIVE — We developed a field procedure using personal digital assistant (PDA) technology to test the hypothesis that naturally occurring episodes of hypo- and hyperglycemia are associated with deterioration in cognitive function in children with type 1 diabetes.

RESEARCH DESIGN AND METHODS — A total of 61 children aged 6–11 years with type 1 diabetes received a PDA programmed with two brief cognitive tests (mental math and choice reaction time), which they completed just before home glucose readings. The computer recorded time to complete each test and number of correct responses. Children completed several trials per day over 4–6 weeks for a total of 70 trials. Performance variables were compared across glucose ranges. Individual impairment scores (ISIs) were also computed for each child by calculating the SD between performance during euglycemia and that during glucose extremes.

RESULTS — Time to complete both mental math and reaction time was significantly longer during hypoglycemia. During hyperglycemia, time to complete math was significantly longer and reaction time was marginally significant (P = 0.053). There were no differences on task accuracy. Decline in mental math performance was equivalent at glucose levels <3.0 and >22.2 mmol/l. ISIs varied greatly across children, with no age or sex differences.

CONCLUSIONS — A decrease in mental efficiency occurs with naturally occurring hypo- and hyperglycemic glucose fluctuations in children with type 1 diabetes, and this effect can be detected with a field procedure using PDA technology. With blood glucose levels >22.2 mmol/l, cognitive deterioration equals that associated with significant hypoglycemia.
Cognitive function and children with diabetes

school-aged youth with type 1 diabetes. This field procedure was then used to test the hypothesis that children experience significant disruptions in cognitive performance in their daily lives due to naturally occurring episodes of both acute hypo- and hyperglycemia. Children performed two brief cognitive tests on a PDA just before home glucose measurements three to five times per day over a period of ~1 month, completing a total of 70 trials. After completing each test, children made subjective ratings of the difficulty of performing the task to determine the degree to which they were subjectively aware of changes in cognitive function. Individual impairment scores (IISs) were computed for each child to examine relationships between cognitive disruption and several demographic and clinical variables, including age, sex, diabetes duration, history of severe hypoglycemia, and metabolic control.

RESEARCH DESIGN AND METHODS — Children participating in this study were taking part in a larger project investigating family management of diabetes, which required them to complete surveys programmed on PDA computers several times each day. Although later phases of the larger project involved interventions, including blood glucose awareness training, data for this study was collected during an earlier phase of the project that did not involve any intervention. Families were recruited for the study through pediatric endocrine clinics at the University of Virginia and Joslin Diabetes Center in Boston, as well as through advertisements and regional parent support groups. Inclusion criteria for children were age 6–11 years, a diagnosis of type 1 diabetes for at least 1 year, willingness to perform glucose measurements 3–5 times daily, and ability to read, complete questionnaires, and use the PDA. Inclusion criteria for parents included ability to complete the study protocol, role as main diabetes caregiver for the child, and the absence of any self-reported significant psychiatric disorder, including depression and substance abuse. Eligible families were invited to orientation meetings during which the study was explained and institutional review board–approved informed consent/assent was obtained.

A total of 77 families entered the study, and 68 parent-child pairs completed the protocol. Reasons for withdrawal for nine families included relocation, family stressors, and illness in the child. Two other families withdrew because the child did not want to continue completing the PDA surveys. For two families, PDA data were lost in the mail, and they chose not to repeat the procedure. An additional three families had missing data that excluded them from data analysis. Thus, the final sample of children with complete data was 61 (University of Virginia n = 31, Joslin n = 30). There were no significant demographic or clinical differences between families who completed and did not complete the study. Children received a $35 toy or bookstore gift card for completing data collection.

The final sample included 31 girls and 30 boys, whose mean ± SD age was 8.83 ± 1.6 years and diabetes duration was 4.7 ± 2.6 years, with 25 children aged 6–8 and 36 aged 9–11 years. A1C measures ranged from 6.7 to 10.4% (7.9 ± 0.68%). No children had repeated A1C measurements over the past year and reported the frequency of severe and moderate episodes were defined as those in which hypoglycemia significantly disrupted routine or ongoing behavior (e.g., the child could not continue with current activities). Mild episodes were defined as those associated with warning symptoms that quickly resolved after treatment and did not significantly disrupt function. Parents reported the frequency of severe and moderate episodes over the past year and reported the frequency of mild episodes over the past month.

Cognitive performance assessment

Families were provided with a Visor PDA programmed with cognitive tests and linked to a Freestyle Tracker BG meter to collect and store glucose readings (Abbott Diabetes Care, Abbott Labs, Alameda, CA). Families were asked to complete 3–5 PDA trials each day, for a total of 70 trials over the next 4–6 weeks. Children were unable to complete trials unless the parent was present and entered a password to start the program. After children completed the cognitive tests, the computer instructed parents and children to measure glucose. All data were automatically stored and time stamped, providing a validity check to insure that children completed cognitive tests before glucose measurement.

The PDA presented two cognitive tests, a mental math task and choice reaction time. These tests were chosen based on previous studies (3,6,7) showing that these tasks were sensitive to cognitive-motor disruptions in performance caused by blood glucose extremes in adults. Both tests were adapted for use by children. The mental math task consisted of 10 math problems, 5 additions and 5 subtractions, presented in random order. Children entered their solution by tapping numbers displayed on a number pad on the screen. For children ages 6–8 years, math problems and solutions contained only single-digit numbers. Children aged 9–11 years were given math problems containing one double-digit number <20 and one single-digit number. In the choice reaction-time task, the symbols for the four card suits (hearts, diamonds, spades, and clubs) were shown in color in the four corners of the screen. One card suit would appear in the center of the screen, and children “tapped” the matching card suit in one of the corners, with a total of 10 to match presented in random order. The computer tracked two performance measures, time to complete the task (in seconds) and number of problems correct. After completing each task, children rated their difficulty completing the task (e.g., how hard it was) on a visual analogue scale, where 0 = not at all and 6 = very hard.

After orientation and informed consent/assent, parents and children were given Visor computers and Freestyle meters and instructed on their use and were also given, questionnaires to complete and a stamped envelope for returning data. After return of PDA data, a blood sample kit was mailed to parents, who obtained blood from their children and returned the sample to the University of Virginia Clinical Laboratories for A1C measurement.
Data analysis
Two dependent measures were computed for each cognitive test: 1) time (in seconds) to complete the task (math time and reaction time) and 2) number of correct responses (math correct and reaction time correct). For math time and reaction time, higher numbers indicate more seconds to complete the task and therefore poorer performance. For math correct and reaction time correct, higher numbers indicate more accuracy and better performance. The data were analyzed 1) across subjects at different blood glucose ranges to examine the impact of glycemic status on cognitive function and 2) within subject, using Z scores, to determine whether individual subjects showed differences in the degree to which cognitive function declined at glucose extremes. For analyses across glucose levels, means for performance measures were computed for six clinically relevant ranges: <3.0 mmol/l (<54 mg/dl), 3.0–3.8 mmol/l (54–69 mg/dl), 3.9–9.9 mmol/l (70–179 mg/dl), 10–16.6 mmol/l (180–299 mg/dl), 16.7–22.1 mmol/l (300–399 mg/dl), and >22.2 mmol/l (>400 mg/dl). The ranges 16.7–22.1 mmol/l and higher than 22.2 mmol/l were specifically chosen for investigation because, in the state of Virginia, parents are called when children’s glucose readings at school are higher than 16.7 mmol/l and sent home from school when readings are higher than 22.2 mmol/l (15).

IISs were also computed for each child, using the child’s mean performance during euglycemia (4.3–9.9 mmol/l) as their individual baseline or “normal” performance. The difference, in Z scores, between mean baseline performance and mean performance during hypo- and hyperglycemia was then computed. IISs were computed for blood glucose levels <3.0 and >22.2 mmol/l. Thus, these impairment scores represented the mean number of SDs between performance during euglycemia and the most extreme blood glucose levels. The calculation of similar measures for individual impairment in adults with diabetes has been previously described in detail (6,7).

RESULTS
Performance across blood glucose levels
Fig. 1 shows the means and SDs for each of the four performance measures across blood glucose ranges. There were significant main effects for math time ($F = 5.0$, $P < 0.001$) and a strong trend for reaction time ($F = 2.2$, $P = 0.053$). Contrasts showed that compared with performance at euglycemia, math time was significantly longer when blood glucose was <3.0 mmol/l ($P = 0.017$) and >22.2 mmol/l ($P = 0.0001$). Reaction time was significantly longer at glucose levels <3.0 mmol/l ($P = 0.01$), with a trend toward significance when blood glucose was >22.2 mmol/l ($P = 0.08$). For both math time and reaction time, seconds to task completion did not differ for glucose levels <3.0 and >22.2 mmol/l, indicating that performance was equally poor in the lowest and highest blood glucose ranges for both tasks. Compared with performance during euglycemia, math time was an average of 12.6 and 16.8 s longer when blood glucose levels were <3.0 and >22.2 mmol/l, respectively. Reaction time was an average of 2.6 and 1.5 s slower when glucose levels were <3.0 and >22.2 mmol/l, respectively. In contrast to the results for time to perform tasks, there were no significant differences in the number of correct responses across ranges.

Exploratory analyses were also conducted to identify practice effects over
time on the two tasks. Math time and re-
action time over the first 35 trials were
compared with the second 35 trials at
each of the above three blood glucose
ranges: euglycemia (3.9–9.9 mmol/l), hy-
poglycemia (<3.0 mmol/l), and hyper-
glycemia (>22.2 mmol/l). As expected,
during euglycemia math time was signifi-
cantly shorter for the second of 35 trials
(56.9 vs. 66.8 s; F = 19.6, P = 0.001), but
there was no improvement for reaction
time (P = 0.13). When blood glucose was
<3.0 or >22.2 mmol/l, there were no sig-
nificant differences in math time or reac-
tion time between the first and second
half of the study, indicating no practice
effects over time.

Perceived difficulty of task performance
Mean difficulty ratings tended to be low
across all blood glucose ranges; however,
significant differences were still found.
For the math task, average ratings were
0.44, 0.77, and 0.58 for euglycemia, hy-
poglycemia, and hyperglycemia, respec-
tively, with a significant main effect across
blood glucose levels (F = 4.3, P < 0.0001).
Mean difficulty ratings for the reac-
tion time task were 0.15, 0.40, and
0.13, respectively, which also differed
across blood glucose levels (F = 3.9, P < 0.001).
However, contrasts showed that for both tasks, difficulty ratings were sig-
nificantly higher only when glucose was
<3.0 mmol/l (P < 0.01). This indicates
that children perceived greater difficulty
performing tasks during hypoglycemia
but not when glucose levels were >22.2
mmol/l, even though time to complete
tasks increased significantly and equiva-
lently at both blood glucose extremes.

Individual differences
To examine individual differences in the
impact of hypo- and hyperglycemia on
performance, IISs were computed as de-
scribed above for math time at blood glu-
cose levels <3.0 and >22.2 mmol/l.
These scores were only computed for
those children who had blood glucose
readings <3.0 mmol/l (n = 34) or >22.2
mmol/l (n = 41). Positive Z scores indi-
cated poorer performance compared with
euglycemia, and negative scores indicated
better performance. Mean IIS for math
time when blood glucose was <3.0 and
>22.2 mmol/l were 0.57 ± 1.6 and
0.33 ± 1.1, respectively. There were no
sex or age differences in IIS at either hypo-
or hyperglycemia. A total of 21% of chil-
dren had IISs higher than 1.0, indicating
that performance deteriorated on average
>1 SD when blood glucose was <3.0
mmol/l. When blood glucose was >22.2
mmol/l, 27% of children showed this de-
gree of decline.

Exploratory correlations were com-
bined between IIS and several clinical
variables. Separate correlations were
computed for glucose ranges <3.0 and
>22.2 mmol/l. Impairment scores were
not related to diabetes duration, blood
glucose variability (as determined by sev-
eral measures including the interquartile
range, low and high blood glucose risk
indexes), or depression and anxiety mea-
sures. The child’s A1C correlated with
impairment scores for reaction time when
blood glucose was >22.2 mmol/l (r = 0.40,
P = 0.02), indicating more impair-
ment with poorer diabetes control. Num-
ber of severe hypoglycemic episodes over
the past year correlated with impairment
scores for both math time (r = 0.39, P =
0.04) and reaction time (r = 0.40, P = 0.02)
when blood glucose was >22.2
mmol/l, indicating that more frequent ep-
isodes were associated with more impair-
ment. Neither A1C nor frequency of
severe hypoglycemia correlated with per-
formance impairment exhibited when
blood glucose was <3.0 mmol/l.

CONCLUSIONS — Based on these
findings, naturally occurring episodes of
acute hypo- and hyperglycemia during
daily routine can be associated with cog-
nitive-motor disruptions in school-aged
children with diabetes. To our knowl-
edge, this is the first study comparing the
negative impact of hypo- and hyperglyce-
mia on cognitive function in this pediatric
population. Somewhat surprisingly, the
decline in performance at both glucose
extremes was equivalent. However, a sig-
nificant decline in performance was not
seen until hyperglycemia became quite
profound. In addition, blood glucose ex-
tremes affected only the time to complete
tasks and not the number of correct re-
sponses. This finding replicates results
from adult studies (2,3) and adds to the
data suggesting that the initial effect of
blood glucose extremes is a decrease in
mental efficiency and speed and not a
decrease in accuracy. Thus, people with
diabetes of all ages may compensate
behaviorally for blood glucose–related
cognitive disruptions by first slowing
down their performance and conse-
quentially sacrificing efficiency to preserve
accuracy. A similar type of behavioral
compensation plays a key role in models
of aging and cognitive functioning (16).

The extent to which people with dia-
betes are subjectively aware of these ef-
fects remains unclear and is an important
area for ongoing research. In this study,
children were aware that they were hav-
ing more difficulty completing tasks dur-
ing hypoglycemia but not during hyperglycemia, even though performance
was equally affected. However, children’s
difficulty ratings were also extremely low
(average <1.0 on a six-point scale) across
all blood glucose ranges, which may indi-
cate that they were reluctant to acknowl-
dge problems in their performance. In a
previous article (17), we have reported
that young children show very poor abil-
ity to recognize mild to moderate hypo-
glycemia, failing to detect on average over
40% of blood glucose readings <3.0
mmol/l. Given this, it is somewhat sur-
prising that children in this study showed
some awareness of increased difficulty
performing the tasks when blood glucose
levels were low.

Although this study found statistically
significant differences in performance
at blood glucose extremes, it is also
important to consider whether the ob-
served level of deterioration is clinically
significant. One approach to this question
is to examine the degree of disruption by
whatever objective standards are avail-
able. During euglycemia, it took children
an average of just over 1 min to complete
10 relatively simple mental math pro-
blems. During hypo- and hyperglycemia,
respectively, this task took an average of
12 and ±16 seconds longer to com-
plete, representing an ~20% decrease in
speed. It is not difficult to imagine that a
20% decrease in mental efficiency could
be clinically meaningful, especially with
more complex, demanding, or time-
consuming tasks. Another approach to
this question is to evaluate the number of
individual children who showed effects
that might be considered clinically signif-
icant. In this study, IISs indicated that
performance declined >1 SD during hy-
po- and hyperglycemia for >20% of
children.

The finding that children varied
greatly in the extent to which they were
affected by glucose extremes replicates
findings from studies of adults with dia-
betes (3,6). The mechanisms underlying
these individual differences in vulnerabil-
ity remain difficult to identify. In this
study, demographic variables such as age
and sex were not associated with individ-
ual differences. Exploratory correlations to examine the role of clinical variables indicated that higher A1C levels and frequency of severe hypoglycemia may be related to more impairment when blood glucose levels are very high. This finding is in contrast to the predictions some clinicians would make based on anecdotal evidence that type 1 diabetic individuals who are in better glycemic control experience more symptomatology and disruption with hyperglycemia. Neither A1C or history of severe hypoglycemia were related to the degree of impairment during hypoglycemia. Obviously, more research with much larger numbers of children is needed to gather more conclusive information regarding risk factors for acute blood glucose-related cognitive disruption.

More research is also needed to identify the neurobiological mechanisms underlying the impact of acute hyperglycemia on cognitive function. While the effect of neuroglycopenia secondary to hypoglycemia is well defined, there is controversy about the neurological effect of hyperglycemia. However, there are several possibilities including microvascular dysfunction in the blood-brain barrier and alterations in the synthesis, availability, or reuptake of neurotransmitters, such as serotonin (18). Recent studies have identified a significant reduction in the plasma free fraction of t-tryptophan in children with type 1 diabetes, as well as differences in auditory cortical responses between children with and without diabetes, which may indicate brain differences in serotonergic neurotransmission (19,20). Other recent studies show that changes in extracellular brain glucose have a direct effect on orexin neurons in the lateral hypothalamus, which play a critical role in the regulation of wakefulness and arousal (21).

Another purpose of this study was to determine whether PDA procedures could provide an alternative field method for studying cognitive function in children at different blood glucose levels. Two questions need to be addressed for this purpose: feasibility and efficacy. In terms of feasibility, it appears that in general children can successfully perform repeated trials of brief PDA-administered cognitive tests over a period of several weeks. Of 77 families who entered the study, 78% completed the protocol. In terms of efficacy, the mental math task appears to be sensitive enough to detect differences in children’s cognitive performance associated with glycemic extremes. This replicates findings in previous studies of adults with diabetes (3,6) and indicates that even relatively simple tasks requiring working memory and problem solving can be disrupted by hyperglycemia. The reaction time task showed less sensitivity to the disruptive effects of blood glucose extremes and also no practice effects during euglycemia, which may indicate that it was not complex or difficult enough. Failure to find an effect on performance accuracy may also have occurred because of a ceiling effect for these relatively easy tasks, which were designed to avoid producing psychological burden and frustration for these young children. Future studies need to incorporate more complex and demanding cognitive tasks, while balancing the need to not overburden pediatric populations.

The current study has several important methodological limitations that should be considered when interpreting these findings. First, we tested a relatively small number of children over a relatively short period of time, which yielded a limited number of extreme blood glucose readings to analyze. Only 56 and 67% of the children had blood glucose values in the lowest and highest ranges, respectively, for data analysis. Future studies are needed to test a larger number of children over a longer time period, or for repeated short periods over longer time, to capture more measures of performance during extreme blood glucose fluctuations. In addition, future studies would benefit greatly by using continuous glucose-monitoring devices in order to obtain a more comprehensive picture of glucose dynamics preceding cognitive testing. This approach would allow, for example, the opportunity to assess the impact of blood glucose variability and of antecedent episodes of hypo- and/or hyperglycemia on cognitive function. Finally, this study is limited by testing a fairly homogenous sample of almost all Caucasian children with well-educated parents.

Even with these limitations, the finding that routinely occurring episodes of acute hypo- and hyperglycemia can disrupt cognitive motor function in children, and that the impact of significant hyperglycemia equals that of significant hypoglycemia, has important implications. Nonetheless, these findings should be considered preliminary and interpreted with great caution. For example, these findings should not be interpreted as evidence that children’s cognitive performance cannot be affected by blood glucose levels <22.2 mmol/l. Nor are these findings evidence that all children will experience significant impairments at 22.2 mmol/l. This study found large individual differences in degree of impairment at different blood glucose levels, and there are likely numerous, unidentified variables that influence the impact of an episode of acute hyperglycemia on cognitive function. What these findings do strongly indicate is that more research into the effects of acute hyperglycemia on cognitive function in children is warranted.

Acknowledgments — This research was supported by the National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases R01 06039).

This research was also supported by Abbott Diabetes Care, Abbott Labs, Alameda, California, who provided blood glucose meters and testing supplies. L.G.-F., B.K., and W.C. have received research funding from Abbott Diabetes Care, Abbott Labs, Alameda, CA. No other potential conflicts of interest relevant to this article were reported.

The authors also thank Tiana Bolden and Steven Mortimer for editorial assistance; Nancy Kechnier, Likun Hou, Victoria Parsons, Rupa Dasgupta, and Mi-Young Ryee for their help in data collection, management, and analysis; and Bob Chase from Sweetbriar University in Amherst, VA, for programming the PDA survey.

References
5. Draelos MT, Jacobsen Am, Weinger K, Widom B, Ryan C, Finkelstein D, Simonen D. Cognitive function in patients with insulin dependent diabetes mellitus dur-
Cognitive function and children with diabetes

