Abdominal Subcutaneous Adipose Tissue: A Protective Fat Depot?

Citation

Published Version
doi://10.2337/dc08-2280

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:8160860

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Abdominal Subcutaneous Adipose Tissue: A Protective Fat Depot?

STACY A. PORTER, MA1,2
JOSEPH M. MASSARO, PHD1,3
UDO HOFFMANN, MD, MPH4
RAMACHANDRAN S. VASAN, MD1,5
CHRISTOPHER J. O’DONNELL, MD, MPH1,6
CAROLINE S. FOX, MD, MPH1,7

OBJECTIVE — Obesity is associated with increased metabolic and cardiovascular risk. The ectopic fat hypothesis suggests that subcutaneous fat may be protective, but this theory has yet to be fully explored.

RESEARCH DESIGN AND METHODS — Participants from the Framingham Heart Study (n = 3,001, 48.5% women) were stratified by visceral adipose tissue (VAT) into sex-specific tertiles. Within these tertiles, age-adjusted abdominal subcutaneous adipose tissue (SAT) tertiles were examined in relation to cardiometabolic risk factors.

RESULTS — In the lowest VAT tertile, risk factor prevalence was low, although systolic blood pressure in women and rates of high triglycerides, impaired fasting glucose, hypertension, and the metabolic syndrome in men increased with increasing SAT tertile (all P < 0.04). In contrast, in the top VAT tertile, lower triglycerides were observed in men with increasing SAT (64.4% high triglycerides in SAT tertile 1 vs. 52.7% in SAT tertile 3, P = 0.03). Similar observations were made for women, although results were not statistically significant (50.6% high triglycerides in SAT tertile 1 vs. 41.0% in tertile 3, P = 0.10). Results in the highest VAT tertile were notable for a lack of increase in the prevalence of low HDL in men and women and in rates of impaired fasting glucose in men with increasing subcutaneous fat, despite sizable differences in BMI across SAT tertiles (27.1 to 36.3 kg/m² [women], 28.1 to 35.7 kg/m² [men]).

CONCLUSIONS — Although adiposity increases the absolute risk of metabolic and cardiovascular disease, abdominal subcutaneous fat is not associated with a linear increase in the prevalence of all risk factors among the obese, most notably, high triglycerides.

Diabetes Care 32:1068–1075, 2009

Obesity is associated with multiple cardiometabolic risk factors, including insulin resistance (1), diabetes (2), hypertension (3), and dyslipidemia (4). Variations in fat distribution may mediate such risks, with visceral adipose tissue (VAT) associated with more adverse risk factor profiles than abdominal subcutaneous adipose tissue (SAT) (5,6). The ectopic fat hypothesis proposes that obesity represents a failure of adipocyte growth and differentiation, resulting in “acquired lipodystrophy” and fat deposition in liver, skeletal muscle, and pancreatic B-cells (7). Such ectopic fat stores are hypothesized to contribute to the pathogenesis of impaired insulin secretion and insulin resistance and to mediate obesity-related cardiovascular disease (8).

In addition to the detrimental effects of VAT, human and animal studies have suggested a possible protective role for subcutaneous fat. In humans, increased subcutaneous leg fat is associated with decreased risk of disturbed glucose metabolism and dyslipidemia, independent of abdominal fat (9). Thiazolidinedione treatment, which increases total fat mass, mostly in subcutaneous fat stores, improves insulin sensitivity (10). Removal of VAT by omentectomy results in decreased glucose and insulin levels in humans, (11), whereas removal of SAT by liposuction does not always result in improvements in glucose metabolism or lipid levels (12,13). Transplantation of subcutaneous fat into visceral compartments in mice produces decreases in body weight and total fat mass and improved glucose metabolism, suggesting that subcutaneous fat may be intrinsically different from visceral fat in ways that are beneficial (14).

Therefore, the purpose of the present study was to test the hypothesis that abdominal subcutaneous fat is a protective fat depot in terms of cardiometabolic risk factor prevalence. We theorized that among those with similar levels of VAT, increasing SAT might be associated with decreases in cardiometabolic risk factor prevalence despite increasing BMI and total abdominal fat.

RESEARCH DESIGN AND METHODS — The Framingham Heart Study is a prospective cohort study that began in 1948. In 1971, the offspring and spouses of the original cohort were enrolled in the Offspring Study, and in 2002 the children of the original cohort’s offspring were enrolled in the Third Generation Study. Between June 2002 and April 2005, 3,529 Offspring and Third Generation participants underwent chest and abdominal computed tomographic (CT) scanning in conjunction with the Multi-Detector Computed Tomography (MDCT) substudy. The present study sample consisted of the 3,001 participants (1,455 women and 1,546 men) who had interpretable CT scans (both chest and abdominal), who were free of cardiovascular disease, and who had complete covariate information.

The institutional review boards of the Boston University Medical Center and Massachusetts General Hospital approved the study protocol. All subjects provided informed written consent.
Abdominal adipose tissue imaging and volumetric measurements
Participants underwent eight-slice MDCT abdominal scanning in a supine position (LightSpeed Ultra, General Electric, Milwaukee, WI). Twenty-five contiguous 5-mm thick slices (120 kVp, 400 mA, gantry rotation time 500 ms, and table feed 3:1) were obtained, covering 125 mm above the level of S1.

VAT and SAT volumes were quantified from CT scans using a dedicated offline workstation (Aquarius 3D Workstation; TeraRecon, San Mateo, CA) using a semiautomatic segmentation technique. A reader manually traced the abdominal muscular wall separating the two layers. An image display window width of −195 to −45 Hounsfield units and a window center of −120 Hounsfield units were used to identify pixels containing fat. VAT was defined as adipose tissue inside the abdominal muscular wall and SAT as adipose tissue outside the abdominal muscular wall. Interclass correlations for inter-reader comparisons were 0.997 for SAT and 0.992 for VAT on a random sample of 100 scans; high intra-reader correlations were similarly obtained.

Risk factor and covariate assessment
Covariates were measured at the seventh Framingham Offspring examination (1998–2001) and the first Third Generation examination (2002–2005). BMI was calculated as weight in kilograms divided by the square of height in meters. Waist circumference was measured at the umbilicus. Serum triglycerides, total and HDL cholesterol, and fasting plasma glucose were measured in fasting morning samples obtained from attendees. Diabetes was defined as fasting plasma glucose ≥126 mg/dl or treatment with a hypoglycemic agent or insulin; impaired fasting glucose was defined as a fasting plasma glucose level of 100–125 mg/dl in the absence of diabetes treatment. Hypertension was defined as systolic blood pressure ≥140 mmHg and diastolic blood pressure as ≥90 mmHg or antihypertensive treatment. High triglycerides were defined as ≥150 mg/dl or lipid treatment. Low HDL was defined as <40 mg/dl for men or <50 mg/dl for women. Current smoking was defined as smoking ≥1 cigarette per day in the past year. Alcohol use was evaluated through a physician-administered questionnaire and categorized as more or less than 14 drinks per week (men) or 7 drinks per week (women). Women were classified as postmenopausal if periods had stopped for ≥1 year. Metabolic syndrome was defined by modified Adult Treatment Panel III criteria (impaired fasting glucose defined as fasting plasma glucose 100–125 mg/dl in the absence of treatment of diabetes, the high triglyceride component was defined as triglycerides ≥150 mg/dl or treatment with a lipid-lowering agent, and blood pressure criteria were modified to include treatment for hypertension).

Statistical analysis
Study participants were stratified by VAT into sex-specific tertiles. Within each tertile, subjects were categorized further into sex-specific abdominal SAT tertiles. Age-adjusted means and prevalences of risk factors including BMI, waist circumference, fasting glucose, diabetes, HDL cholesterol, triglycerides, hypertension, and the metabolic syndrome were compared across the SAT tertiles. Because overall and visceral adiposity increases with age, all analyses were age-adjusted. As a secondary analysis, participants were separately stratified into SAT tertiles within each clinical BMI category (normal weight, overweight, and obese), and the analyses were repeated. All analyses were performed using SAS (version 9.1); two-tailed values of P < 0.05 were considered significant.

RESULTS
Study sample characteristics
Overall, 1,455 women (mean age 51.4 years) and 1,546 men (mean age 48.6 years) comprised the study sample. The average BMI was 26.7 kg/m² for women and 28.3 kg/m² for men, with 24.1% of women and 27.3% of men classified as obese. Approximately one-quarter of women had high triglycerides, low HDL, hypertension, and the metabolic syndrome, whereas 41.1% of men had high triglycerides, 31.1% had low HDL, 28.5% had hypertension, and 35.2% had the metabolic syndrome. Additional study sample characteristics are listed in Table 1.

Age-adjusted tertile analysis
All measures of adiposity (BMI, waist circumference, SAT, and VAT) increased significantly for women and men across SAT tertiles within each VAT tertile (Table 2). Among those in the lowest VAT tertile, risk factor prevalence was uniformly low and increased with increasing SAT tertile (Table 3). Among women, the age-adjusted linear trend was significant for systolic blood pressure (109 mmHg in SAT tertile 1 vs. 114 mmHg in SAT tertile

Table 1—Study sample characteristics

<table>
<thead>
<tr>
<th></th>
<th>Women</th>
<th>Men</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>1,455</td>
<td>1,546</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>51.4 ± 9.5</td>
<td>48.6 ± 10.1</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.7 ± 5.4</td>
<td>28.3 ± 4.4</td>
<td></td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>92.0 ± 14.4</td>
<td>100.3 ± 11.5</td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>119.5 ± 17.4</td>
<td>123.1 ± 14.3</td>
<td></td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>73.5 ± 9.1</td>
<td>78.5 ± 8.9</td>
<td></td>
</tr>
<tr>
<td>Fasting plasma glucose (mg/dl)</td>
<td>94.9 ± 16.6</td>
<td>101.0 ± 20.0</td>
<td></td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>109.8 ± 65.2</td>
<td>139.6 ± 102.9</td>
<td></td>
</tr>
<tr>
<td>Impaired fasting glucose*</td>
<td>251 (18.0)</td>
<td>558 (38.5)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>62 (4.3)</td>
<td>95 (6.2)</td>
<td></td>
</tr>
<tr>
<td>High triglycerides†</td>
<td>354 (24.3)</td>
<td>635 (41.1)</td>
<td></td>
</tr>
<tr>
<td>Low HDL‡</td>
<td>352 (24.2)</td>
<td>481 (31.1)</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>352 (24.2)</td>
<td>440 (28.5)</td>
<td></td>
</tr>
<tr>
<td>Metabolic syndrome</td>
<td>361 (24.8)</td>
<td>543 (35.2)</td>
<td></td>
</tr>
<tr>
<td>Current smoking</td>
<td>178 (12.2)</td>
<td>203 (13.1)</td>
<td></td>
</tr>
<tr>
<td>Alcohol (≥14 drinks/week in men/≥7 drinks/week in women)</td>
<td>222 (15.3)</td>
<td>247 (16.0)</td>
<td></td>
</tr>
<tr>
<td>Postmenopausal</td>
<td>694 (47.7)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Hormone replacement therapy</td>
<td>333 (22.9)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>SAT (cm³)</td>
<td>3,076 ± 1,449</td>
<td>2,599 ± 1,185</td>
<td></td>
</tr>
<tr>
<td>VAT (cm³)</td>
<td>1,309 ± 809</td>
<td>2,158 ± 967</td>
<td></td>
</tr>
</tbody>
</table>

Data are means ± SD or n (%). *Defined as fasting plasma glucose 100–125 mg/dl in the absence of diabetes treatment. †Defined as triglycerides ≥150 mg/dl or lipid treatment. ‡Defined as HDL <40 mg/dl (men) or <50 mg/dl (women).
<table>
<thead>
<tr>
<th>VAT tertile 1</th>
<th>SAT tertile 1</th>
<th>SAT tertile 2</th>
<th>SAT tertile 3</th>
<th>Age-adjusted SAT linear P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>161</td>
<td>163</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>20.6 ± 0.2</td>
<td>22.3 ± 0.2</td>
<td>24.6 ± 0.2</td>
<td><0.0001</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>74.2 ± 0.5</td>
<td>79.0 ± 0.5</td>
<td>84.6 ± 0.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>SAT (cm³)</td>
<td>1,067 ± 32</td>
<td>1,780 ± 32</td>
<td>2,701 ± 32</td>
<td><0.0001</td>
</tr>
<tr>
<td>SAT range (cm³)</td>
<td>170.8–1,463.2</td>
<td>1,463.4–2,084.9</td>
<td>2,085.0–5,130.2</td>
<td></td>
</tr>
<tr>
<td>VAT (cm³)*</td>
<td>421 ± 9</td>
<td>561 ± 9</td>
<td>631 ± 9</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VAT tertile 2</th>
<th>SAT tertile 1</th>
<th>SAT tertile 2</th>
<th>SAT tertile 3</th>
<th>Age-adjusted SAT linear P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>161</td>
<td>162</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.7 ± 0.2</td>
<td>25.5 ± 0.2</td>
<td>29.4 ± 0.2</td>
<td><0.0001</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>84.3 ± 0.5</td>
<td>90.9 ± 0.5</td>
<td>99.3 ± 0.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>SAT (cm³)</td>
<td>2,139 ± 40</td>
<td>2,921 ± 40</td>
<td>4,300 ± 40</td>
<td><0.0001</td>
</tr>
<tr>
<td>SAT range (cm³)</td>
<td>727.2–2,555.6</td>
<td>2,555.8–3,337.2</td>
<td>3,348.7–7,460.9</td>
<td></td>
</tr>
<tr>
<td>VAT (cm³)*</td>
<td>1,061 ± 16</td>
<td>1,135 ± 16</td>
<td>1,230 ± 16</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VAT tertile 3</th>
<th>SAT tertile 1</th>
<th>SAT tertile 2</th>
<th>SAT tertile 3</th>
<th>Age-adjusted SAT linear P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>161</td>
<td>162</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.1 ± 0.3</td>
<td>30.9 ± 0.3</td>
<td>36.3 ± 0.3</td>
<td><0.0001</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>95.0 ± 0.8</td>
<td>104.6 ± 0.8</td>
<td>116.3 ± 0.8</td>
<td><0.0001</td>
</tr>
<tr>
<td>SAT (cm³)</td>
<td>2,910 ± 49</td>
<td>4,123 ± 48</td>
<td>5,730 ± 48</td>
<td><0.0001</td>
</tr>
<tr>
<td>SAT range (cm³)</td>
<td>1,678.8–3,480.8</td>
<td>3,481.5–4,692.0</td>
<td>4,713.1–8,876.7</td>
<td></td>
</tr>
<tr>
<td>VAT (cm³)*</td>
<td>1,977 ± 47</td>
<td>2,222 ± 46</td>
<td>2,535 ± 46</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Data are means ± SEM. *VAT range: 202.3–800.9 cm³ (women), 172.7–1679.2 cm³ (men). †VAT range: 803.2–1,545.1 cm³ (women), 1,679.3–2,497.4 cm³ (men). ‡VAT range: 1,546.7–5,548.0 cm³ (women), 2,497.6–6,212.7 cm³ (men). WC, waist circumference.
<table>
<thead>
<tr>
<th>SAT tertile</th>
<th>Age-adjusted risk factors by sex-specific SAT tertile within sex-specific VAT tertiles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Women</td>
</tr>
<tr>
<td></td>
<td>Age-adjusted SAT linear P value</td>
</tr>
<tr>
<td>SAT tertile 1</td>
<td>SAT tertile 2</td>
</tr>
<tr>
<td>Age</td>
<td>46.9 ± 0.6</td>
</tr>
<tr>
<td>SBP</td>
<td>117 ± 1</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>87.8 ± 0.8</td>
</tr>
<tr>
<td>Log triglycerides</td>
<td>4.2 ± 0.03</td>
</tr>
<tr>
<td>Impaired fasting glucose*</td>
<td>3.1</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.0</td>
</tr>
<tr>
<td>High triglycerides†</td>
<td>2.8</td>
</tr>
<tr>
<td>Low HDL‡</td>
<td>8.7</td>
</tr>
<tr>
<td>Hypertension</td>
<td>6.3</td>
</tr>
<tr>
<td>Metabolic syndrome</td>
<td>0.0</td>
</tr>
<tr>
<td>VAT tertile 2</td>
<td>SAT tertile 1</td>
</tr>
<tr>
<td>Age</td>
<td>53.6 ± 0.7</td>
</tr>
<tr>
<td>SBP</td>
<td>117 ± 1</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>94.2 ± 1.0</td>
</tr>
<tr>
<td>Log triglycerides</td>
<td>4.5 ± 0.04</td>
</tr>
<tr>
<td>Impaired fasting glucose*</td>
<td>15.4</td>
</tr>
<tr>
<td>Diabetes</td>
<td>3.3</td>
</tr>
<tr>
<td>High triglycerides†</td>
<td>20.0</td>
</tr>
<tr>
<td>Low HDL‡</td>
<td>22.3</td>
</tr>
<tr>
<td>Hypertension</td>
<td>14.9</td>
</tr>
<tr>
<td>Metabolic syndrome</td>
<td>8.3</td>
</tr>
<tr>
<td>VAT tertile 3</td>
<td>SAT tertile 1</td>
</tr>
<tr>
<td>Age</td>
<td>58.5 ± 0.7</td>
</tr>
<tr>
<td>SBP</td>
<td>127 ± 1</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>98.1 ± 1.7</td>
</tr>
<tr>
<td>Log triglycerides</td>
<td>4.8 ± 0.04</td>
</tr>
<tr>
<td>Impaired fasting glucose*</td>
<td>30.0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>4.0</td>
</tr>
<tr>
<td>High triglycerides†</td>
<td>50.6</td>
</tr>
<tr>
<td>Low HDL‡</td>
<td>36.3</td>
</tr>
<tr>
<td>Hypertension</td>
<td>40.2</td>
</tr>
<tr>
<td>Metabolic syndrome</td>
<td>51.2</td>
</tr>
</tbody>
</table>

Data are means ± SEM or %. *Defined as fasting plasma glucose 100–125 mg/dl in the absence of diabetes treatment. †Defined as triglycerides ≥ 150 mg/dl or lipid treatment. ‡Defined as HDL < 40 mg/dl (men) or 50 mg/dl (women). SBP, systolic blood pressure.
Subcutaneous adipose tissue and risk factors

Figure 1—Age-adjusted levels of risk factors by tertile of SAT in normal-weight (A and D), overweight (B and E), and obese (C and F) subjects. *P < 0.05, **P < 0.01, and ***P < 0.001 for linear trend across tertiles. DM, diabetes; HTN, hypertension; IFG, impaired fasting glucose; MetS, metabolic syndrome; TGs, triglycerides.

however, the prevalence of high triglycerides did not increase with SAT and decreased significantly among obese women (48.8% in SAT tertile 1 vs. 33.0% in SAT tertile 3, P = 0.02).

CONCLUSIONS

Principal findings
Cardiometabolic risk increases with increasing visceral adiposity and BMI. Among those in the bottom two VAT tertiles, increasing subcutaneous fat is generally associated with increases in risk factor prevalence. Among those in the highest VAT tertile, however, increasing SAT is not associated with uniform increases in risk factors prevalence, despite significant increases in BMI, waist circumference SAT, and VAT. Most striking, linear trends for triglycerides actually decrease with increasing SAT in the top VAT tertile, suggesting that subcutaneous fat may be associated with beneficial effects on triglyceride levels in those with the most visceral fat.

In the context of the current literature
Although total adiposity is strongly associated with metabolic and cardiovascular risk, it is becoming increasingly clear that different fat compartments contribute differentially to these risks. Abdominal visceral fat is a stronger correlate of cardiovascular disease risk than BMI, waist circumference, or abdominal subcutaneous fat (5,6). Central obesity, in which fat mass is predominantly intra-abdominal, is more strongly associated with insulin resistance, dyslipidemia, and atherosclerosis than is peripheral obesity, in which fat is predominantly gluteofemoral (1,15). Weight loss through diet and exercise, which results in reductions in visceral fat (16), is associated with improvements in insulin sensitivity (17), blood pressure (18), serum lipids (19), and inflammatory markers (20). Similarly, loss of VAT by omentectomy leads to decreases in glucose and insulin levels (11), whereas loss of SAT by liposuction does not always produce the same beneficial effects (12,13), suggesting that VAT is more likely to be responsible for the metabolic abnormalities associated with obesity.

A few studies have suggested a possible beneficial role for SAT, observing that increased hip and thigh fat mass is associated with lower glucose and lipid levels, independent of abdominal fat (9). Patients with lipodystrophic loss of SAT have an increased risk for insulin resistance, diabetes, and dyslipidemia (21). In mice, transplantation of subcutaneous fat into visceral compartments leads to decreases in body weight and total fat mass and improved glucose metabolism, whereas transplantation of visceral fat into either subcutaneous or visceral compartments results in no such improvements. This suggests that subcutaneous
fat may differ from visceral fat in ways that are metabolically beneficial (14).

Our results confirm that cardiometabolic risk increases significantly with increases in VAT. The prevalence of many risk factors, including hypertension and the metabolic syndrome, also increases with increasing SAT for all VAT and BMI tertiles. Among those in the lower two-thirds of the VAT distribution, more SAT is also associated with increased risk of most other risk factors examined, sug-
gesting that SAT is not protective in these individuals. Among those with the most VAT, however, increased SAT is associated with lower triglycerides, suggesting that SAT may be associated with beneficial effects on triglyceride levels in the obese.

Mechanisms

The ectopic fat hypothesis suggests that a hallmark of obesity is fat deposition in liver, skeletal muscle, and pancreatic β-cells resulting from insufficient adipocyte growth and differentiation in the setting of nutritional excess (22). Such ectopic fat stores are theorized to affect tissue and organ function by physical compression, the secretion of various locally acting substances, and cell dysfunction or cell death of nonadipose cells, a phenomenon known as lipotoxicity (7).

In line with this theory, SAT represents a proper expansion of nonpathogenic adipocytes and therefore may be considered a protective fat depot (22). Improvements in insulin sensitivity with thiazolidinedione treatment, which increases subcutaneous fat stores, are suggestive of a protective effect of SAT (10). Our results are consistent with a potential protective role for SAT in the case of triglycerides among the obese.

Another possible explanation for obesity-related cardiometabolic disease is the portal vein hypothesis, which proposes that increased visceral fat leads to higher free fatty acid concentrations in the portal vein, increased systemic fatty acid flux, and increased hepatic lipase activity, which removes lipids from LDL and HDL, and may lead to dyslipidemia (23). Although our results do not contradict the detrimental effects of VAT proposed by the portal vein hypothesis (the prevalence of all risk factors increased with VAT ter-
tile in our sample), they do support the notion that such a theory is, at best, incomplete because it does not explain either the detrimental or the beneficial effects of SAT, which does not drain through the portal vein, on cardiometabolic risk.

VAT and SAT differ not only in anatomic location but also in cytokine secretion profile. SAT releases 2–3 times more leptin than VAT (24), whereas VAT se-
cretes more adiponectin, interleukin-6, interleukin-8, plasminogen activator inhibitor 1, and angiotensin than does SAT (23). Although the relationships be-
tween VAT and SAT secretion profiles and cardiometabolic pathogenesis are,
at present, unclear, it may be that para-
crine and perhaps endocrine factors
contribute to the differential effects of
VAT and SAT.

It is important to note that our results
suggest a possible protective effect of SAT
only among those in the highest tertile of
VAT. Indeed, in the lower VAT tertiles,
increasing SAT is associated only with in-
creases in risk factor prevalence. One ex-
planation for this difference is that there is
a relatively larger increase in VAT in the
lower tertiles and that SAT is simply a
marker for increased VAT in these groups.
SAT by itself may not be deleterious or
beneficial in the absence of the positive
energy balance of obesity. Accordingly,
SAT may only be protective in obese in-
dividuals because these individuals are
already in positive energy balance and SAT
provides a nonpathological energy stor-
age depot. It is also important to note that
the lack of increase in the prevalence of
risk factors such as low LDL and impaired
fasting glucose with increasing SAT
among the obese may be due to a thresh-
old effect, whereby risk factor prevalence
is already so high that increasing SAT is
not associated with further increases in
prevalence.

Strengths and limitations
Compared with previous work on subcu-
taneous fat and cardiometabolic risk, the
strengths of the present study include a
large sample size with a wide range of BMI
and age, thereby reducing the likelihood
of ascertainment bias in the results. In ad-
dition, the study benefits from the quanti-
fication of fat volumes from CT scans
rather than a single-slice measurement of
fat area. A major limitation of the study is
its lack of data on subcutaneous fat stores
aside from the abdomen; therefore, we
cannot generalize our findings to glu-
cofemoral fat. Further, we are unable to
separate deep versus superficial SAT
in the abdomen. It may be that superficial
SAT is less pathogenic than deep SAT
(25). In addition, analysis by VAT and
SAT tertiles increases the number of sta-
tistical tests performed, increasing the
likelihood of false-positive results at the
P < 0.05 significance level. Other limita-
tions include the cross-sectional study
design, which precludes inferences of
causality, and the lack of ethnic diversity,
which may limit generalizability to non-
white groups.

In summary, whereas abdominal ad-
posity is associated with a higher abso-
lute risk of metabolic and cardiovascular
disease, subcutaneous abdominal fat is
not associated with a linear increase in the
prevalence of all risk factors among the
obese. Indeed, in the case of high triglyc-
cerides, SAT may actually be a protective
fat depot in obese individuals.

Acknowledgments — This work was sup-
ported by the National Heart, Lung, and
Blood Institute (NHLBI) Framingham Heart
Study (Grant N01-HC-25195). S.A.P. is supported
by the PASTEUR Program and the Harvard
Medical School Office of Enrichment Pro-
grams. R.S.V. is supported in part by Grant
2K24HL04334 (NHLBI, National Institutes of
Health).

No potential conflicts of interest relevant to
this article were reported.

References
1. Despres JP. The insulin resistance-dyslip-
idenmic syndrome of visceral obesity: ef-
fect on patients’ risk. Obes Res 1998;6
(Suppl. 1):85–175
2. Mokdad AH, Ford ES, Bowman BA, Dietz
WH, Vinicor F, Bales VS, Marks JS. Preva-
ience of obesity, diabetes, and obesity-
related health risk factors, 2001. JAMA
2003;289:76–79
3. Harris MM, Stevens J, Thomas N, Schre-
iner P, Folsom AR. Associations of fat dis-
tribution and obesity with hypertension
in a bi-ethnic population: the ARIC study.
Atherosclerosis Risk in Communities
4. Lemieux I, Pascot A, Couillard C,
Lamarche B, Tchernof A, Almeras N,
Bergeron J, Gaudet D, Tremblay G,
Prud’homme D, Moorjani S, Brun LD,
Gagne C, Lupien P, Despres JP. The insulin resis-
tance-dyslipidemic syndrome: contribu-
tion of visceral obesity and therapeutic
implications. Int J Obes Relat Metab Dis-
ord 1995;19 (Suppl. 1):S76–S86
5. Despres JP, Lemieux S, Lamarche B,
Prud’homme D, Moorjani S, Brun LD,
Gagne C, Lupien P. The insulin resis-
tance-dyslipidemic syndrome: contribu-
tion of visceral obesity and therapeutic
implications. Int J Obes Relat Metab Dis-
ord 1995;19 (Suppl. 1):S76–S86
6. Fox CS, Massaro JM, Hoffmann U, Pou
KM, Maurich-Horvat P, Liu CY, Vasan
RS, Murabito JM, Meigs JB, Cupples LA,
D’Agostino RB Sr, O’Donnell CJ. Abdomi-
nal visceral and subcutaneous adipose
tissue compartments: association with
metabolic risk factors in the Framingham
Heart Study. Circulation 2007;116:
319–48
7. Unger RH. The physiology of cellular li-
poregulation. Annu Rev Physiol 2003;65:
333–347
8. Montani JP, Carroll JS, Dwyer TM, Antic
V, Yang Z, Dulloo AG. Ectopic fat storage
in heart, blood vessels and kidneys in the
pathogenesis of cardiovascular diseases.
Int J Obes Relat Metab Disord 2004;28
(Suppl. 4):S58–S65
9. Snijder MB, Visser M, Dekker JM, Good-
paster BH, Harris TB, Kritchevsky SB, De
RN, Kanaya AM, Newman AB, Tylavsky
FA, Seidell JC. Low subcutaneous thigh
fat is a risk factor for unfavourable glucose
and lipid levels, independently of high ab-
dominal fat. The Health ABC Study. Dia-
betologia 2009;48:301–308
10. Miyazaki Y, Mahankali A, Matsuda M,
Mahankali S, Hardies J, Cusi K, Man-
darino LJ, DeFronzo RA. Effect of piogli-
tuzone on abdominal fat distribution and
insulin sensitivity in type 2 diabetic pa-
tients. J Clin Endocrinol Metab 2002;87:
2784–2791
11. Thorne A, Lonnyqvist F, Apelman J,
Hellers G, Arner P. A pilot study of long-
term effects of a novel obesity treatment:
omentectomy in connection with adjust-
able gastric banding. Int J Obes Relat Metab
Disord 2002;26:193–199
12. Klein S, Fontana L, Young VL, Coggan
AR, Kilo C, Patterson BW, Mohammed
BS. Absence of an effect of liposuction on
insulin action and risk factors for coro-
350:2549–2557
13. Giugliano G, Nicoletti G, Grella E, Giugli-
ano F, Esposito K, Scuderi N, D’Andrea F.
Effect of liposuction on insulin resistance
and vascular inflammatory markers in
obese women. Br J Plast Surg 2004;57:
190–194
14. Tran T, Yamamoto Y, Gesta S, Kahn CR.
Beneficial effects of subcutaneous fat
transplantation on metabolism. Cell
Metab 2008;7:410–420
15. Scherzer R, Shen W, Bacchetti P, Kotler D,
Lewis CE, Shlipak MG, Heymsfield SB,
Grunfeld C. Simple anthropometric mea-
sures correlate with metabolic risk indica-
tors as strongly as magnetic resonance
imaging-measured adipose tissue depots
in both HIV-infected and control sub-
jects. Am J Clin Nutr 2008;87:1809–1817
16. Langendonk JG, Kok P, Frolich M, Pijl H,
Meinders AE. Decrease in visceral fat fol-
dowing diet-induced weight loss in upper
body compared to lower body obese pre-
menopausal women. Eur J Intern Med
2006;17:465–469
17. Uusitupa M, Lindi V, Louheranta A,
Salopuro T, Lindstrom J, Tuomilehto J.
Long-term improvement in insulin sen-
sitivity by changing lifestyles of people
with impaired glucose tolerance: 4-year
results from the Finnish Diabetes Pre-
vention Study. Diabetes 2003;52:2532–
2538
18. Stevens VJ, Obarzanek E, Cook NR, Lee
IM, Appel LJ, Smith WD, Milas NC,
Mattfeldt-Beman M, Belden L, Bragg C,

