Chiral Sulfinamide/Achiral Sulfonic Acid Cocatalyzed Enantioselective Protonation of Enol Silanes

Citation

Published Version
doi:10.1021/ol201608a

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:8737993

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Chiral Sulfinamide/Achiral Sulfonic Acid Co-Catalyzed Enantioselective Protonation of Enol Silanes

Elizabeth M. Beck, Alan M. Hyde, Eric N. Jacobsen*

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138

jacobson@chemistry.harvard.edu

Received Date (will be automatically inserted after manuscript is accepted)

ABSTRACT

The application of chiral sulfinamides and achiral sulfonic acids as a co-catalyst system for enantioselective protonation reactions is described. Structurally simple, easily accessible sulfinamides were found to induce moderate-to-high ee's in the formation of 2-aryl-substituted cycloalkanones from the corresponding trimethylsilyl enol ethers.

Weak-to-moderately strong chiral Brønsted acids, ranging from diols to phosphoric acids, have been applied in a variety of catalytic enantioselective transformations. Particular success has been achieved in catalysis of addition reactions to relatively basic electrophiles such as imines. More recently, some effort has been directed towards accessing and utilizing stronger Brønsted acids, enabling expansion of the scope to the activation of carbonyl groups and certain olefins.

We became interested in exploring the potential of the conjugate acids of chiral sulfinamides as a novel class of strong, chiral Brønsted acid catalysts. While sulfinamides find extensive use as chiral auxiliaries and ligands in asymmetric synthesis, applications of these privileged chiral structures as organocatalysts are less common. Our design was inspired by recent studies with sulfinamide–urea catalyst 1a, which revealed that the highly enantioselective addition of electron-rich alkenes to protonium ions can be achieved through a network of non-covalent interactions between the electrophile and the chiral urea-bound counteranion. In particular, spectroscopic and computational evidence was obtained for a hydrogen-bond interaction between the sulfinamide group of the catalyst and the N–H proton of the iminium cations of these privileged structures as organocatalysts are less common.

4 For recent studies with sulfinamide–urea catalyst 1a, which revealed that the highly enantioselective addition of electron-rich alkenes to protonium ions can be achieved through a network of non-covalent interactions between the electrophile and the chiral urea-bound counteranion. In particular, spectroscopic and computational evidence was obtained for a hydrogen-bond interaction between the sulfinamide group of the catalyst and the N–H proton of the iminium cations of these privileged structures as organocatalysts are less common.

5 For a recent, comprehensive review of the synthesis and applications of tert-butanesulfinamide, see: (a) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600. and for p-tolylsulfinamide, see: (b) Zhou, P.; Chen, B.-C.; Davis, F. A. Tetrahedron 2004, 60, 8003.

ion intermediate (Figure 1A). We hypothesized that in the absence of the Lewis-basic imine, the combination of a sulfonic acid and sulfamidemic urea catalyst 1a could produce a chiral acidic species capable of effecting enantioselective protonation reactions (Figure 1B). The proximity of the stereogenic sulfur to the proton would potentially enable high levels of stereochemical communication. Here we describe the development of this new approach for catalysis and its application to the enantioselective catalytic protonation of prochiral enol silanes as a method for the preparation of chiral, \(\alpha \)-branched ketones.5,6

Silyl enol ether 5a, derived from 2-phenylcyclohexanone, was selected as the model substrate (Scheme 1). A suitable achiral stoichiometric proton source was sought that would effect protonation of the sulfamide catalyst scaffold without promoting a background racemic protonation pathway. It was found that 2,4-dinitrobenzene sulfonic acid (2,4-dNBSA) was well suited, as it is completely insoluble in toluene at \(-40^\circ C\) and, consequently, unreactive toward 5a under these conditions. However, in the presence of catalytic levels of sulfamidemic–urea 1a, substrate protonation occurred to generate the corresponding ketone 6a in 67% ee. No reactivity toward 5a was displayed by 1a alone under these conditions. Ketone 6a was found to be configurationally stable under the catalytic conditions.

Systematic variation of the catalyst structure revealed that replacement of the sulfamide group with other basic functional groups such as sulfonamides (1d) or tertiary amines (1e) led to much less effective catalysts for the protonation of 5a with 2,4-dNBSA, and that urea derivatives such as 2, lacking a basic ancillary group, were completely unreactive (Scheme 1).

![Scheme 1. Evaluation of catalyst structures](image)

Examination of simple sulfamide 3, which lacks a urea moiety, revealed that it was also catalytically active in the protonation of 5a, affording ketone 6a in >95% yield and 41% ee. The enantioselectivity observed with 3, while moderate, revealed that enantioselective catalysis could be achieved with compounds bearing only the sulfamide moiety. The synthetic accessibility of these simple structures allowed for the rapid preparation and screening of a large array of substituted sulfamidemic derivatives.8 Testing analogues of 3 demonstrated that branching at the carbon center adjacent to the sulfamidemic nitrogen was deleterious to both reactivity and enantioselectivity, so efforts were focused on simple primary sulfamidemic derivatives (Scheme 1, 4a–f). Interestingly, both simple alkyl- and benzyl-substituted

8 For additional details of other sulfamide–urea structures and associated selectivities in the enantioselective protonation reaction, see supporting information.
catalysts performed comparably (4a vs. 4d). For both, however, a significant increase in enantioselectivity was observed with analogues bearing additional electron-withdrawing groups. This effect was especially pronounced with fluorinated analogues (4a vs. 4b and 4c; 4d vs. 4e and 4f).

The enantioselectivity was also found to be responsive to the identity of the sulfonic acid, even though none of the sulfonic acid derivatives examined displayed any background reactivity in the absence of catalyst 4c (Table 1, entries 2–5). Reactions with 2,4-dinitrobenzene sulfonic acid as the strong acid source afforded highest ee’s. Further, it was observed that it is possible to use a catalytic quantity of the sulfonic acid as long as a stoichiometric proton source such as water or a phenol is introduced (entries 6–8). In particular, reactions with hindered phenols such as 2,6-di-tert-butyphenol afforded product 6a in highest enantioselectivity (entry 8). Addition of a desiccant such as sodium sulfate to remove residual water associated with the hydroscopic sulfonic acids had a beneficial effect on both yield and ee (entries 1 vs. 2, and 8 vs. 9). Under optimal conditions, product 6a was obtained in 86% ee using 4c as the catalyst with 0.2 equiv 2,4-diNBSA, 2.0 equiv 2,6-di-tert-butyphenol and 2.0 equiv Na2SO4 in toluene at -50 °C (Table 2, entry 9).

Table 1. Effect of the proton source on enantioselectivity

<table>
<thead>
<tr>
<th>entry</th>
<th>equiv ArSO3H</th>
<th>H+ source</th>
<th>conversion (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,6-(NO2)2</td>
<td>-</td>
<td>>95</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>2,4-(NO2)2</td>
<td>-</td>
<td>>95</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>2-NO2</td>
<td>-</td>
<td>>95</td>
<td>69</td>
</tr>
<tr>
<td>4</td>
<td>3-NO2</td>
<td>-</td>
<td>>95</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>2,4-Cl</td>
<td>-</td>
<td>>95</td>
<td>58</td>
</tr>
<tr>
<td>6</td>
<td>2,6-(NO2)2</td>
<td>H2O</td>
<td>>95</td>
<td>69</td>
</tr>
<tr>
<td>7</td>
<td>2,4-(NO2)2</td>
<td>PhOH</td>
<td>>95</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>2,6-(NO2)2</td>
<td>2,6-(t-Bu)CH2OH</td>
<td>70</td>
<td>83</td>
</tr>
<tr>
<td>9</td>
<td>2,4-(NO2)2</td>
<td>0.2</td>
<td>2,6-(t-Bu)CH2OH</td>
<td>78</td>
</tr>
</tbody>
</table>

* Reactions were carried out on 0.05 mmol scale. † 2 equiv Na2SO4 included. ‡ Determined by 'H NMR. § Determined by HPLC using commercial chiral columns.

A variety of silyl enol ethers were examined under these conditions in the enantioselective protonation reaction (Table 2). Several 2-aryl-substituted cyclic ketones bearing electron-donating or withdrawing para substituents could be obtained in high yield and with ee’s between 78 and 89% (entries 1–6). Substituents in the ortho and meta positions were also tolerated (entries 7–9). The cycloheptanone derivative 5j, however, underwent protonation with measurably lower enantioselectivity (entry 10).

Table 2. Substrate scope

<table>
<thead>
<tr>
<th>entry</th>
<th>enol silyl</th>
<th>n</th>
<th>R</th>
<th>ketone</th>
<th>yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5a</td>
<td>1</td>
<td>C6H5</td>
<td>6a</td>
<td>91</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>5b</td>
<td>1</td>
<td>4-MeC6H4</td>
<td>6b</td>
<td>92</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td>5c</td>
<td>1</td>
<td>4-O-MeC6H4</td>
<td>6c</td>
<td>90</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>5d</td>
<td>1</td>
<td>4-ClC6H4</td>
<td>6d</td>
<td>89</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>5e</td>
<td>1</td>
<td>4-BrC6H4</td>
<td>6e</td>
<td>88</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>5f</td>
<td>1</td>
<td>4-C6H4-2-Me</td>
<td>6f</td>
<td>84</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>5g</td>
<td>1</td>
<td>3-MeC6H4</td>
<td>6g</td>
<td>92</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>5h</td>
<td>1</td>
<td>2-MeC6H4</td>
<td>6h</td>
<td>91</td>
<td>85</td>
</tr>
<tr>
<td>9</td>
<td>5i</td>
<td>1</td>
<td>2-Naphthyl</td>
<td>6i</td>
<td>93</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>5j</td>
<td>2</td>
<td>C6H5</td>
<td>6j</td>
<td>88</td>
<td>73</td>
</tr>
</tbody>
</table>

* Reactions were carried out on 0.15 mmol scale. Silyl enol ether and 4c were added as a solution in toluene to 2,4-diNBSA, 2,6-di-t-butyl phenol and Na2SO4 in toluene at -78 °C. † Isolated yield based on silyl enol ether. ‡ Determined by HPLC using commercial chiral columns.

While the sulfinamide appears to promote the protonation reaction by functioning as a solid-to-solution phase transfer catalyst for the insoluble 2,4-diNBSA, the basis for stereoinduction in these reactions is intriguing and not at all apparent. As outlined below, our preliminary mechanistic investigation suggests several interesting possibilities for how a catalyst as simple as 4c might contribute in cooperative stabilizing interactions in the selectivity-determining transition structure.

A linear dependence of reaction enantioselectivity on the enantiopurity of 4c was observed, indicating the sulfinamide catalyst maintains a monomeric structure in the ground state and in the ee-determining transition state. Accordingly, our analyses considered only pathways involving one chiral catalyst molecule.

In principle, either proton transfer or silyl transfer may be rate- and enantiodetermining in the protonation of silyl enol ethers catalyzed by 4c. Both scenarios were evaluated computationally in the reaction of silyl enol ether 5a with protonated sulfinamide catalyst CF3CH2NHS(O)Bu- (4g) (Figure 2). Given the structural and functional group simplicity of the chiral catalyst, we were especially interested in whether attractive noncovalent interactions might play a role in organizing...
the transition structures into energetically well-defined geometries.11

Preliminary calculations indicated that proton transfer should occur from the oxygen atom of the sulfinamide, as NH-to-C proton transfer was significantly higher in energy. We examined a series of transition structures incorporating NH–π, CH–π or hydrogen bonding interactions, as well as others lacking secondary noncovalent interactions. Of these, the lowest energy structures were those that included CH–π interactions from the electron-deficient CH\textsubscript{2} side chain of the catalyst to the substrate aryl ring (one representative structure is shown in Figure 2A). In this structure the distance from the closest hydrogen of catalyst to the centroid of the arene is 2.47 Å. Since the existence of a weak noncovalent interaction cannot be inferred from atomic distance only, analysis of the electron density and its derivatives was carried out using the NCIPLOT program recently developed by Yang and co-workers.12 This approach allows for the generation of gradient isosurfaces that indicate the location and strength of noncovalent interactions of all types.

Transition structures for silyl transfer from a C-protonated silyl enol ether intermediate to the sulfinamide oxygen were also modeled. In one such structure, hydrogen bonding from the NH of 4g to the incipient carbonyl and also to the arene is observed to provide a rigidifying framework (Figure 2B).

The identity of the sulfinate counterion has a measurable influence on enantioselectivity (Table 1). Modeling the proton transfer step with a benzene sulfinate counterion included (Figure 2C) also revealed a network of potential attractive interactions. In the most energetically accessible structures, the sulfinate appears to be held in place by hydrogen bonding to the sulfinamide NH. However, NCI analysis points to electrostatic attraction with the CO bond developing positive charge as the dominant force that positions the sulfinate.

At this stage, development of a rigorous stereochemical model is beyond the scope of this analysis, and would likely require a dynamic approach that considers an ensemble of structures. Nevertheless, intriguing possibilities have been identified for how the structurally simple sulfinamide catalysts might engage in noncovalent, attractive interactions that can play a critical role in transition state organization.

In summary, simple chiral sulfinamide derivatives used in conjunction with a strong achiral sulfonic acid are effective catalysts for enantioselective protonation of prochiral silyl enol ethers. The use of these sulfinamide catalysts as acid shuttles introduces a new role for these readily accessible compounds, and we anticipate extension of this reactivity principle to other types of synthetically interesting enantioselective protonation reactions.

\textbf{Acknowledgment} This work was supported by the NIGMS (PO1 GM-69721 and RO1 GM-43214) and by a Mary Fieser Postdoctoral Fellowship to E.M.B. from Harvard University and an NIH postdoctoral fellowship to A.M.H. We thank Amanda Turek for catalyst synthesis and Stephan Zeund for providing the calculated structure in Figure 1B.

\textbf{Supporting Information Available} Full experimental procedures, syntheses of substrates and catalysts, characterization data for all new compounds, NMR spectra and HPLC traces for protonation products, additional optimization with details of additional sulfinamide scaffolds, methods for computational analysis, cartesian coordinates for calculated structures, and NCIPLOT structures. This material is available free of charge via the Internet at http://pubs.acs.org.

11 Accurately reproducing noncovalent interactions is a challenge for many density functional theory methods. We utilized Truhlar’s M05-2X functional, which has been shown to be suitable in this respect: Zhou, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
