Association Between Passive and Active Smoking and Incident Type 2 Diabetes in Women

Citation

Published Version
doi:10.2337/dc10-2087

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:9793862

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Association Between Passive and Active Smoking and Incident Type 2 Diabetes in Women

Luxia Zhang, MD1,2,3 Eric B. Rimm, ScD1,4
Gary C. Curhan, MD, ScD1,2 John P. Forman, MD, MSc1,2
Frank B. Hu, MD, PhD1,4

OBJECTIVE—Accumulating evidence has identified a positive association between active smoking and the risk of diabetes, but previous studies had limited information on passive smoking or changes in smoking behaviors over time. This analysis examined the association between exposure to passive smoke, active smoking, and the risk of incident type 2 diabetes among women.

RESEARCH DESIGN AND METHODS—This is a prospective cohort study of 100,526 women in the Nurses’ Health Study who did not have prevalent diabetes in 1982, with follow-up for diabetes for 24 years.

RESULTS—We identified 5,392 incident cases of type 2 diabetes during 24 years of follow-up. Compared with nonsmokers with no exposure to passive smoke, there was an increased risk of diabetes among nonsmokers who were occasionally (relative risk [RR] 1.10 [95% CI 0.94–1.23]) or regularly (1.16 [1.00–1.35]) exposed to passive smoke. The risk of incident type 2 diabetes was increased by 28% (12–50) among all past smokers. The risk diminished as time since quitting increased but still was elevated even 20–29 years later (1.15 [1.00–1.32]). Current smokers had the highest risk of incident type 2 diabetes in a dose-dependent manner. Adjusted RRs increased from 1.39 (1.17–1.64) for 1–14 cigarettes per day to 1.98 (1.57–2.36) for ≥25 cigarettes per day compared with nonsmokers with no exposure to passive smoke.

CONCLUSIONS—Our study suggests that exposure to passive smoke and active smoking are positively and independently associated with the risk of type 2 diabetes.

Diabetes Care 34:892–897, 2011

Smoking is one of the leading causes of avoidable death globally (1). The disease burden attributable to smoking already is enormous, with ~6 million premature deaths worldwide each year, and is projected to grow substantially across the century without an end to the pandemic (1). Diabetes also is a global health priority. The International Diabetes Federation has predicted that the number of individuals with diabetes will increase from 240 million in 2007 to 380 million in 2025 (2).

Accumulating evidence has identified a positive association between active smoking and risk of type 2 diabetes (3), whereas few studies had information on passive smoking. Data from the Third National Health and Nutrition Examination Survey 1988–1991 suggest that ~90% of nonsmokers have detectable levels of serum cotinine, a sensitive marker for tobacco exposure (4). Therefore, previous studies linking active smoking with diabetes risk might have underestimated the magnitude of the true association because individuals exposed to passive smoke would be in the reference group. The few studies that simultaneously examined the relative associations of passive

From the ’Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts; the *Renal Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts; the *Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China; and the *Departments of Nutrition and Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Corresponding author: Luxia Zhang, nhlzh@channing.harvard.edu.

Received 3 November 2010 and accepted 31 January 2011.

DOI: 10.2337/dc10-2087

© 2011 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

892 Diabetes Care, volume 34, April 2011 care.diabetesjournals.org
nicotine levels compared with women who reported no exposure to passive smoke (7).

Duration of smoking and years since quitting were calculated based on information from the initial and subsequent questionnaires. Pack-years of smoking (the equivalent of smoking 20 cigarettes a day for 1 year) was calculated by multiplying the number of packs smoked per day by the number of years of smoking.

Assessment of other covariates
Information on race, family history of diabetes, and waist circumference was obtained at baseline. BMI (calculated as weight in kilograms divided by the square of height in meters) and physical activity (metabolic equivalent tasks) were ascertained at baseline and updated with new information every 2 years. Total energy intake and intakes of alcohol, magnesium, calcium, vitamin D, total trans fat, fiber from cereal, and caffeine were ascertained first in 1980 using a semiquantitative food frequency questionnaire (FFQ) and then updated every 2–4 years from subsequent FFQs. The reproducibility and validity of the FFQ in the NHS has been documented (8). Except for total energy intake and intake of alcohol, nutrient values were adjusted for total energy intake by the residual method (9). Husband’s education status, which was inquired in 1992, also was included in the analyses as an indicator of socioeconomic status because of the limited variability in the nurses’ education attainment.

Assessment of diabetes
The baseline and biennial follow-up questionnaires asked participants to report whether a clinician had made a new diagnosis of type 2 diabetes during the preceding 2 years. Women who self-reported diabetes were then sent a supplementary questionnaire to confirm the diagnosis of diabetes; this questionnaire gathered information about symptoms, diagnostic laboratory test results, and diabetes treatment (10). Diagnosis of diabetes by the supplementary questionnaire in the NHS has been shown to be highly accurate (98.4% were confirmed by medical records), with a low percentage of false-negative self-reports (0.5%) (11).

Statistical analyses
Person-time was censored at the date of diabetes diagnosis, death, incident cancer diagnosis (except for nonmelanoma skin cancer), or the end of follow-up (June 2006), whichever came first. Participants who did not return the baseline FFQ were allowed to contribute person-time for later time intervals if they returned a subsequent FFQ.

In our primary analysis, participants were classified by smoking status at baseline (1982) and reclassified in each biennial follow-up cycle. Smoking status was analyzed in seven groups: 1) participants who were consistent nonsmokers through June 2006 and who reported no exposure to passive smoke (which was the reference group); 2) participants who were persistent nonsmokers through June 2006 but who occasionally were exposed to passive smoke; 3) participants who were persistent nonsmokers through June 2006 but who were regularly exposed to passive smoke; 4) past smokers; 5) current smokers who smoked 1–14 cigarettes per day; 6) current smokers who smoked 15–24 cigarettes per day; and 7) current smokers who smoked ≥25 cigarettes per day. Exposure to passive smoke at baseline was carried forward in subsequent time intervals. Participants who never provided information on exposure to passive smoke and active smoking (9.5%) were included in the analysis as a separate missing group. Cox proportional hazards regression models were used to estimate relative risks (RRs) and 95% CIs. Multivariable models were constructed to adjust for potential confounding variables that have been previously associated with incident diabetes [age (continuous), race (Caucasian, American African, American Indian, and other), BMI (continuous), quadratic BMI (continuous), physical activity (quintiles), husband’s education status [high school or less, Bachelor’s degree, or higher than Bachelor’s degree], family history of diabetes [yes or no], total energy intake [in quintiles], and intakes of alcohol [six categories], magnesium, calcium, vitamin D, total trans fat, fiber from cereal and caffeine, total fat and saturated fat [all in quintiles]]. Proportional hazards assumptions were verified by testing the interaction with time using the likelihood ratio test ($P = 0.27$).

We also performed four additional analyses. First, to address the possibility of confounding by other markers of adiposity, we added baseline waist circumference to the multivariable Cox proportional hazards regression model. Second, we analyzed the association between active smoking and diabetes using pack-years (in place of cigarettes per day) in the following categories: 1–9, 10–19, 20–29, 30–39, and ≥40 pack-years. Third, we divided past smokers into five groups based on the number of years since quitting (<5, 5–9, 10–19, 20–29, and ≥30 years), in order to assess cessation of active smoking on the risk of diabetes. Finally, to compare the results of our study more closely with the results reported by other investigators, we analyzed the association between active smoking and incident diabetes after redefining the reference group to include all nonsmokers (combining nonsmokers without passive smoke exposure and nonsmokers who were exposed to passive smoke); this reference group is more similar to the reference groups in most previous studies. All P values are two-tailed. Statistical tests were performed using SAS version 9.1 for Unix statistical software package (SAS Institute, Cary, NC).

RESULTS—During 24 years (1,539,278 person-years) of follow-up, 5,392 incident cases of physician-diagnosed type 2 diabetes were confirmed with the supplementary questionnaire. Participant characteristics by status of smoking are presented in Table 1. Compared with nonsmokers without exposure to passive smoke, women exposed to passive smoke had higher BMIs, were less physically active, were more likely to be Caucasian, were more likely to have a family history of diabetes, and were less likely to have a husband with a Bachelor’s degree or higher. In contrast, BMI values were similar among current smokers and nonsmokers without exposure to passive smoke. The percentage of women with a positive family history of diabetes was lower among current smokers compared with nonsmokers without exposure to passive smoke. Current smokers also tended to have a lower intake of calcium and vitamin D and a higher intake of alcohol and caffeine.

Active and passive smoking were positively associated with the risk of incident type 2 diabetes (Table 2). Compared with nonsmokers without passive smoke exposure, the multivariable-adjusted RRs for nonsmoking women who were occasionally or regularly exposed to passive smoke were 1.10 (95% CI 0.94–1.23) and 1.16 (1.00–1.35), respectively. The risk of incident type 2 diabetes was increased by 28% (12–50) among past smokers. Current smokers had the highest risk of incident type 2 diabetes in a dose-dependent manner (P value for trend
CONCLUSIONS—In our prospective study of 100,526 women followed for 24 years, we found that exposure to passive smoking was independently associated with the risk of type 2 diabetes. The association appeared dose dependent. The association between smoking and type 2 diabetes was increased by nearly twofold (RR 1.98 [1.57–2.51] for past smokers and 2.90 [2.32–3.64] for current smokers). In our prospective study of 100,526 women followed for 24 years, we found that exposure to passive smoking was independently associated with the risk of type 2 diabetes. The association appeared dose dependent. The association between smoking and type 2 diabetes was increased by nearly twofold (RR 1.98 [1.57–2.51] for past smokers and 2.90 [2.32–3.64] for current smokers).

Table 1—Baseline characteristics by smoking status

<table>
<thead>
<tr>
<th>Variables</th>
<th>Nonsmokers</th>
<th>Occasionally exposed to passive smoking</th>
<th>Regularly exposed to passive smoking</th>
<th>Past smokers</th>
<th>1–14 cigarettes per day</th>
<th>15–24 cigarettes per day</th>
<th>≥25 cigarettes per day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>47 (41–54)</td>
<td>47 (41–54)</td>
<td>47 (41–53)</td>
<td>48 (42–55)</td>
<td>48 (42–54)</td>
<td>48 (42–54)</td>
<td>48 (42–54)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.0 (21.2–25.8)</td>
<td>23.5 (21.6–26.6)</td>
<td>24.1 (21.9–27.4)</td>
<td>23.6 (21.6–26.6)</td>
<td>23.0 (21.1–25.7)</td>
<td>22.8 (21.0–25.4)</td>
<td>23.2 (21.2–26.1)</td>
</tr>
<tr>
<td>Alcohol consumption (g per day)</td>
<td>0.8 (0–4.3)</td>
<td>0.9 (0–5.3)</td>
<td>0.9 (0–4.7)</td>
<td>2.7 (0.8–11.0)</td>
<td>2.7 (0.8–11.2)</td>
<td>2.5 (0–11.6)</td>
<td>3.5 (0–14.6)</td>
</tr>
<tr>
<td>Physical activity (METs per week)</td>
<td>8.4 (3.2–19.9)</td>
<td>8.1 (3.1–19.2)</td>
<td>7.1 (2.4–16.9)</td>
<td>8.9 (3.1–20.5)</td>
<td>7.9 (2.7–20.2)</td>
<td>5.5 (2.2–15.9)</td>
<td>4.1 (1.4–11.6)</td>
</tr>
<tr>
<td>Caucasian (%)</td>
<td>96.2</td>
<td>93.8</td>
<td>93.1</td>
<td>94.9</td>
<td>93.5</td>
<td>95.2</td>
<td>95.9</td>
</tr>
<tr>
<td>Husband’s education (%)†</td>
<td>5.0</td>
<td>4.7</td>
<td>3.9</td>
<td>4.0</td>
<td>3.9</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Family history of diabetes (%)</td>
<td>17.3</td>
<td>18.2</td>
<td>19.9</td>
<td>17.4</td>
<td>16.4</td>
<td>15.8</td>
<td>16.6</td>
</tr>
<tr>
<td>Dietary factors (per day)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total calories (kcal)</td>
<td>1,519 (1,230–1,871)</td>
<td>1,534 (1,238–1,883)</td>
<td>1,529 (1,226–1,893)</td>
<td>1,495 (1,200–1,830)</td>
<td>1,473 (1,170–1,828)</td>
<td>1,481 (1,177–1,840)</td>
<td>1,511 (1,198–1,879)</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>696 (531–918)</td>
<td>675 (519–885)</td>
<td>657 (497–877)</td>
<td>685 (526–894)</td>
<td>656 (500–862)</td>
<td>643 (483–851)</td>
<td>626 (470–840)</td>
</tr>
<tr>
<td>Total fat (g)</td>
<td>4.0 (3.2–4.9)</td>
<td>4.0 (3.2–4.9)</td>
<td>4.0 (3.2–4.9)</td>
<td>3.8 (3.0–4.7)</td>
<td>3.8 (3.0–4.7)</td>
<td>4.0 (3.2–4.9)</td>
<td>3.9 (3.1–4.8)</td>
</tr>
<tr>
<td>Fiber from cereal (g)</td>
<td>2.5 (1.7–3.7)</td>
<td>2.3 (1.5–3.4)</td>
<td>2.1 (1.4–3.2)</td>
<td>2.2 (1.4–3.3)</td>
<td>2.0 (1.3–3.0)</td>
<td>1.9 (1.2–2.9)</td>
<td>1.9 (1.2–2.8)</td>
</tr>
<tr>
<td>Sugar (mg)</td>
<td>69 (60–78)</td>
<td>70 (61–79)</td>
<td>71 (62–79)</td>
<td>69 (60–78)</td>
<td>70 (61–79)</td>
<td>71 (62–80)</td>
<td>71 (61–81)</td>
</tr>
</tbody>
</table>

Data are median (interquartile range) or percentage. *Participants who were consistent nonsmokers through June 2006 and who reported no exposure to passive smoke. †Percentage of those with a Bachelor’s degree or higher.
Table 2—Smoking and risk of incident type 2 diabetes

<table>
<thead>
<tr>
<th>Variables</th>
<th>Nonsmokers</th>
<th>Current smokers</th>
<th>Past smokers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>64.2</td>
<td>64.1</td>
<td>64.2</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>28.0</td>
<td>28.1</td>
<td>28.2</td>
</tr>
<tr>
<td>Diabetes duration</td>
<td>6.5</td>
<td>6.6</td>
<td>6.5</td>
</tr>
<tr>
<td>Occupation (%)</td>
<td>66.1</td>
<td>65.8</td>
<td>66.3</td>
</tr>
<tr>
<td>Income (%)</td>
<td>67.1</td>
<td>66.9</td>
<td>67.3</td>
</tr>
</tbody>
</table>

Each of these effects has been strongly
discussed in other articles. Data from the
National Cancer Institute (12) and the
Diabetes Control and Complications
Trial (13) have shown that smoking is
independently associated with diabetes risk.

The table above shows the risk of type 2 diabetes for different smoking statuses.

- Nonsmokers: Age-adjusted RR 1.09 (95% CI 1.00–1.20)
- Current smokers: Age-adjusted RR 1.37 (95% CI 1.27–1.47)
- Past smokers: Age-adjusted RR 1.51 (95% CI 1.03–2.18)

The study also controlled for age, race, BMI (continuous BMI and quadratic BMI), physical activity, education, family history of diabetes, total energy intake, and intake of alcohol, magnesium, calcium, vitamin D, total cholesterol, and total energy intake. Multivariable-adjusted RR were also calculated. The RR for active smoking was 1.39 (95% CI 1.17–1.64) and for passive smoking was 1.23 (95% CI 1.00–1.50) compared to nonsmokers.
only modestly correlated with biomarkers of tobacco-smoke exposure, such as serum cotinine (19,25). Part of the reason is the ubiquitous nature of passive smoke. A study of 663 subjects who never used tobacco and former tobacco users revealed that cotinine was found in the urine of 91% of participants, whereas only 76% reported exposure to passive smoke (19). Second, our assessment of passive smoke exposure was ascertained only at baseline in 1982, and it is likely that exposure to passive smoke changed over time because of individual factors (e.g., retirement) or societal factors (e.g., national interventions to reduce smoking). These two limitations would tend to result in misclassification, such that those women reporting little or no exposure in 1982 actually may have had important levels of exposure, whereas those reporting heavy exposure in 1982 may have had less exposure in the later years of follow-up. This type of misclassification would tend to produce weaker RR estimates than would hypothetically be observed in an ideal study. Therefore, we may have actually underestimated the true magnitude of the association between exposure to passive smoke and diabetes.

In conclusion, our prospective analysis suggests that smoking is strongly and independently associated with the risk of incident type 2 diabetes in a dose-dependent manner. Among former active smokers, the increased risk of diabetes persisted for 20 years after smoking cessation. Previous studies may have underestimated the magnitude and duration of the increased risk of diabetes associated with smoking.

Acknowledgments—This study was funded by the American Heart Association (Grant 0553401T), the National Institutes of Health (Grants CA-87969 and HL-070929), and the Beijing NOVA Program from the Beijing Municipal Science and Technology Commission. In addition, this work has been made possible through an International Society of Nephrology--Funded Fellowship (to L.Z.). The American Heart Association, the National Institutes of Health, the Beijing Municipal Science and Technology Commission, and the International Society of Nephrology had no role in the collection, management, analysis, or interpretation of data and had no role in the preparation, review, or approval of the manuscript.

No potential conflicts of interest relevant to this article were reported.

L.Z. wrote the manuscript and researched data. G.C.C. reviewed the manuscript and contributed to discussion. F.B.H. and E.B.R. contributed to discussion. J.F.P. researched data and reviewed the manuscript.

References