Person: Zhou, Jun
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Zhou
First Name
Jun
Name
Zhou, Jun
3 results
Search Results
Now showing 1 - 3 of 3
Publication Genetic incompatibilities are widespread within species(Nature Publishing Group, 2013) Corbett-Detig, Russell B.; Zhou, Jun; Clark, Andrew G.; Hartl, Daniel; Ayroles, JulienThe importance of epistasis—non-additive interactions between alleles—in shaping population fitness has long been a controversial topic, hampered in part by lack of empirical evidence1, 2, 3, 4. Traditionally, epistasis is inferred on the basis of non-independence of genotypic values between loci for a given trait. However, epistasis for fitness should also have a genomic footprint5, 6, 7. To capture this signal, we have developed a simple approach that relies on detecting genotype ratio distortion as a sign of epistasis, and we apply this method to a large panel of Drosophila melanogaster recombinant inbred lines8, 9. Here we confirm experimentally that instances of genotype ratio distortion represent loci with epistatic fitness effects; we conservatively estimate that any two haploid genomes in this study are expected to harbour 1.15 pairs of epistatically interacting alleles. This observation has important implications for speciation genetics, as it indicates that the raw material to drive reproductive isolation is segregating contemporaneously within species and does not necessarily require, as proposed by the Dobzhansky–Muller model, the emergence of incompatible mutations independently derived and fixed in allopatry. The relevance of our result extends beyond speciation, as it demonstrates that epistasis is widespread but that it may often go undetected owing to lack of statistical power or lack of genome-wide scope of the experiments.Publication Y Chromosome Mediates Ribosomal DNA Silencing and Modulates the Chromatin State in Drosophila(Proceedings of the National Academy of Sciences, 2012) Zhou, Jun; Sackton, Timothy; Martinsen, Lene; Lemos, Bernardo; Eickbush, Thomas H.; Hartl, DanielAlthough the Drosophila Y chromosome is degenerated, heterochromatic, and contains few genes, increasing evidence suggests that it plays an important role in regulating the expression of numerous autosomal and X-linked genes. Here we use 15 Y chromosomes originating from a single founder 550 generations ago to study the role of the Y chromosome in regulating rRNA gene transcription, position-effect variegation (PEV), and the link among rDNA copy number, global gene expression, and chromatin regulation. Based on patterns of rRNA gene transcription indicated by transcription of the retrotransposon R2 that specifically inserts into the 28S rRNA gene, we show that X-linked rDNA is silenced in males. The silencing of X-linked rDNA expression by the Y chromosome is consistent across populations and independent of genetic background. These Y chromosomes also vary more than threefold in rDNA locus size and cause dramatically different levels of PEV suppression. The degree of suppression is negatively associated with the number and fraction of rDNA units without transposon insertions, but not with total rDNA locus size. Gene expression profiling revealed hundreds of differentially expressed genes among these Y chromosome introgression lines, as well as a divergent global gene expression pattern between the low-PEV and high-PEV flies. Our findings suggest that the Y chromosome is involved in diverse phenomena related to transcriptional regulation including X-linked rDNA silencing and suppression of PEV phenotype. These results further expand our understanding of the role of the Y chromosome in modulating global gene expression, and suggest a link with modifications of the chromatin state.Publication Genome Features of “Dark-Fly”, a Drosophila Line Reared Long-Term in a Dark Environment(Public Library of Science, 2012) Izutsu, Minako; Zhou, Jun; Sugiyama, Yuzo; Nishimura, Osamu; Aizu, Tomoyuki; Toyoda, Atsushi; Fujiyama, Asao; Agata, Kiyokazu; Fuse, NaoyukiOrganisms are remarkably adapted to diverse environments by specialized metabolisms, morphology, or behaviors. To address the molecular mechanisms underlying environmental adaptation, we have utilized a Drosophila melanogaster line, termed “Dark-fly”, which has been maintained in constant dark conditions for 57 years (1400 generations). We found that Dark-fly exhibited higher fecundity in dark than in light conditions, indicating that Dark-fly possesses some traits advantageous in darkness. Using next-generation sequencing technology, we determined the whole genome sequence of Dark-fly and identified approximately 220,000 single nucleotide polymorphisms (SNPs) and 4,700 insertions or deletions (InDels) in the Dark-fly genome compared to the genome of the Oregon-R-S strain, a control strain. 1.8% of SNPs were classified as non-synonymous SNPs (nsSNPs: i.e., they alter the amino acid sequence of gene products). Among them, we detected 28 nonsense mutations (i.e., they produce a stop codon in the protein sequence) in the Dark-fly genome. These included genes encoding an olfactory receptor and a light receptor. We also searched runs of homozygosity (ROH) regions as putative regions selected during the population history, and found 21 ROH regions in the Dark-fly genome. We identified 241 genes carrying nsSNPs or InDels in the ROH regions. These include a cluster of alpha-esterase genes that are involved in detoxification processes. Furthermore, analysis of structural variants in the Dark-fly genome showed the deletion of a gene related to fatty acid metabolism. Our results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation.