Person:
Townsend, Kristy L

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Townsend

First Name

Kristy L

Name

Townsend, Kristy L

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    Brown Fat Paucity Due to Impaired BMP Signaling Induces Compensatory Browning of White Fat
    (2013) Schulz, Tim J.; Huang, Ping; Huang, Tian Lian; Xue, Ruidan; McDougall, Lindsay E.; Townsend, Kristy L; Cypess, Aaron; Mishina, Yuji; Gussoni, Emanuela; Tseng, Yu-Hua
    Summary Maintenance of body temperature is essential for survival of homeotherms. Brown adipose tissue (BAT) is a specialized fat tissue that is dedicated to thermoregulation1. Due to its remarkable capacity to dissipate stored energy and its demonstrated presence in adult humans2-5, BAT holds great promise for the treatment of obesity and metabolic syndrome1. Rodent data suggest the existence of two types of brown fat cells: the constitutive BAT (cBAT), which is of embryonic origin and anatomically located in the interscapular region of mice, and the recruitable BAT (rBAT) that resides within white adipose tissue (WAT)6 and skeletal muscle7, that has alternatively been called beige8, brite9, or inducible BAT10. Bone morphogenetic proteins (BMPs) regulate the formation and thermogenic activity of BAT10-12. We here provide evidence for a systemically active regulatory mechanism that serves to control whole body BAT-activity for thermoregulation and energy homeostasis. Genetic ablation of type 1A BMP-receptor (Bmpr1A) in brown adipogenic progenitor cells leads to a severe paucity of cBAT. This in turn increases sympathetic input to WAT, thereby promoting the formation of rBAT within white fat depots. This previously unknown compensatory mechanism, aimed at restoring total brown fat-mediated thermogenic capacity in the body, is sufficient to maintain normal temperature homeostasis and resistance to diet-induced obesity. These data suggest an important physiological cross-talk between the constitutive and recruitable brown fat cells. This sophisticated regulatory mechanism of body temperature may participate in the control of energy balance and metabolic disease.
  • Thumbnail Image
    Publication
    Ablation of TRIP-Br2, a novel regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance
    (2012) Liew, Chong Wee; Boucher, Jeremie; Cheong, Jit Kong; Vernochet, Cecile; Koh, Ho-Jin; Mallol, Cristina; Townsend, Kristy L; Langin, Dominique; Kawamori, Dan; Hu, Jiang; Tseng, Yu-Hua; Hellerstein, Marc K; Farmer, Stephen R; Goodyear, Laurie; Doria, Alessandro; Blüher, Matthias; Hsu, Stephen I-Hong; Kulkarni, Rohit
    SUMMARY Obesity develops due to altered energy homeostasis favoring fat storage. Here we describe a novel transcription co-regulator for adiposity and energy metabolism, TRIP-Br2 (also called SERTAD2). TRIP-Br2 null mice are resistant to obesity and obesity-related insulin resistance. Adipocytes of the knockout (KO) mice exhibited greater stimulated lipolysis secondary to enhanced expression of hormone sensitive lipase (HSL) and β3-adrenergic (Adrb3) receptors. The KOs also exhibit higher energy expenditure due to increased adipocyte thermogenesis and oxidative metabolism by up-regulating key enzymes in respective processes. Our data show for the first time that a cell cycle transcriptional co-regulator, TRIP-Br2, modulates fat storage through simultaneous regulation of lipolysis, thermogenesis and oxidative metabolism. These data together with the observation that TRIP-BR2 expression is selectively elevated in visceral fat in obese humans suggests that this transcriptional co-regulator is a novel therapeutic target for counteracting the development of obesity, insulin resistance and hyperlipidemia.
  • Thumbnail Image
    Publication
    Brown adipose tissue
    (Landes Bioscience, 2012) Townsend, Kristy L; Tseng, Yu-Hua
    Obesity is currently a global pandemic, and is associated with increased mortality and co-morbidities including many metabolic diseases. Obesity is characterized by an increase in adipose mass due to increased energy intake, decreased energy expenditure, or both. While white adipose tissue is specialized for energy storage, brown adipose tissue has a high concentration of mitochondria and uniquely expresses uncoupling protein 1, enabling it to be specialized for energy expenditure and thermogenesis. Although brown fat was once considered only necessary in babies, recent morphological and imaging studies have provided evidence that, contrary to prior belief, this tissue is present and active in adult humans. In recent years, the topic of brown adipose tissue has been reinvigorated with many new studies regarding brown adipose tissue differentiation, function and therapeutic promise. This review summarizes the recent advances, discusses the emerging questions and offers perspective on the potential therapeutic applications targeting this tissue.