Person: Wang, Frederick
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Wang
First Name
Frederick
Name
Wang, Frederick
2 results
Search Results
Now showing 1 - 2 of 2
Publication An Epstein-Barr Virus Encoded Inhibitor of Colony Stimulating Factor-1 Signaling Is an Important Determinant for Acute and Persistent EBV Infection(Public Library of Science, 2012) Ohashi, Makoto; Fogg, Mark H.; Orlova, Nina; Quink, Carol; Wang, FrederickAcute Epstein-Barr virus (EBV) infection is the most common cause of Infectious Mononucleosis. Nearly all adult humans harbor life-long, persistent EBV infection which can lead to development of cancers including Hodgkin Lymphoma, Burkitt Lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and lymphomas in immunosuppressed patients. BARF1 is an EBV replication-associated, secreted protein that blocks Colony Stimulating Factor 1 (CSF-1) signaling, an innate immunity pathway not targeted by any other virus species. To evaluate effects of BARF1 in acute and persistent infection, we mutated the BARF1 homologue in the EBV-related herpesvirus, or lymphocryptovirus (LCV), naturally infecting rhesus macaques to create a recombinant rhLCV incapable of blocking CSF-1 (ΔrhBARF1). Rhesus macaques orally challenged with ΔrhBARF1 had decreased viral load indicating that CSF-1 is important for acute virus infection. Surprisingly, ΔrhBARF1 was also associated with dramatically lower virus setpoints during persistent infection. Normal acute viral load and normal viral setpoints during persistent rhLCV infection could be restored by Simian/Human Immunodeficiency Virus-induced immunosuppression prior to oral inoculation with ΔrhBARF1 or infection of immunocompetent animals with a recombinant rhLCV where the rhBARF1 was repaired. These results indicate that BARF1 blockade of CSF-1 signaling is an important immune evasion strategy for efficient acute EBV infection and a significant determinant for virus setpoint during persistent EBV infection.Publication T Cell Detection of a B-Cell Tropic Virus Infection: Newly-Synthesised versus Mature Viral Proteins as Antigen Sources for CD4 and CD8 Epitope Display(Public Library of Science, 2009) Mackay, Laura K.; Long, Heather M.; Brooks, Jill M.; Taylor, Graham S.; Leung, Carol S.; Chen, Adrienne; Wang, Frederick; Rickinson, Alan B.Viruses that naturally infect cells expressing both MHC I and MHC II molecules render themselves potentially visible to both CD8+ and CD4+ T cells through the de novo expression of viral antigens. Here we use one such pathogen, the B-lymphotropic Epstein-Barr virus (EBV), to examine the kinetics of these processes in the virally-infected cell, comparing newly synthesised polypeptides versus the mature protein pool as viral antigen sources for MHC I- and MHC II-restricted presentation. EBV-transformed B cell lines were established in which the expression of two cognate EBV antigens, EBNA1 and EBNA3B, could be induced and then completely suppressed by doxycycline-regulation. These cells were used as targets for CD8+ and CD4+ T cell clones to a range of EBNA1 and EBNA3B epitopes. For both antigens, when synthesis was induced, CD8 epitope display rose quickly to near maximum within 24 h, well before steady state levels of mature protein had been reached, whereas CD4 epitope presentation was delayed by 36–48 h and rose only slowly thereafter. When antigen expression was suppressed, despite the persistence of mature protein, CD8 epitope display fell rapidly at rates similar to that seen for the MHC I/epitope half-life in peptide pulse-chase experiments. By contrast, CD4 epitope display persisted for many days and, following peptide stripping, recovered well on cells in the absence of new antigen synthesis. We infer that, in virally-infected MHC I/II-positive cells, newly-synthesised polypeptides are the dominant source of antigen feeding the MHC I pathway, whereas the MHC II pathway is fed by the mature protein pool. Hence, newly-infected cells are rapidly visible only to the CD8 response; by contrast, latent infections, in which viral gene expression has been extinguished yet viral proteins persist, will remain visible to CD4+ T cells.