Person: Anchan, Raymond
Loading...
Email Address
AA Acceptance Date
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Anchan
First Name
Raymond
Name
Anchan, Raymond
7 results
Search Results
Now showing 1 - 7 of 7
Publication Pelvic and pulmonary benign metastasizing leiomyoma: A case report(Elsevier, 2018) Bakkensen, Jennifer; Samore, Wesley; Bortoletto, Pietro; Morton, Cynthia; Anchan, RaymondSeven years after she had a total abdominal hysterectomy for benign leiomyomas, a 46-year-old woman presented with a pelvic mass and multiple pulmonary nodules. She underwent resection of the mass and core needle biopsy of a pulmonary lesion. Histopathologic analysis revealed that both the pelvic and the pulmonary lesions were consistent with benign leiomyomas. Benign metastasizing leiomyoma should be considered if a woman of reproductive age and with a history of leiomyomas presents with extrauterine nodules without evidence of malignancy. The final diagnosis should be based on histopathological examination. Treatment depends on tumor size, location, receptor positivity, and disease progression.Publication Pax6- and Six3-Mediated Induction of Lens Cell Fate in Mouse and Human ES Cells(Public Library of Science, 2014) Anchan, Raymond; Lachke, Salil A.; Gerami-Naini, Behzad; Lindsey, Jennifer; Ng, Nicholas; Naber, Catherine; Nickerson, Michael; Cavallesco, Resy; Rowan, Sheldon; Eaton, Jennifer L.; Xi, Qiongchao; Maas, RichardEmbryonic stem (ES) cells provide a potentially useful in vitro model for the study of in vivo tissue differentiation. We used mouse and human ES cells to investigate whether the lens regulatory genes Pax6 and Six3 could induce lens cell fate in vitro. To help assess the onset of lens differentiation, we derived a new mES cell line (Pax6-GFP mES) that expresses a GFP reporter under the control of the Pax6 P0 promoter and lens ectoderm enhancer. Pax6 or Six3 expression vectors were introduced into mES or hES cells by transfection or lentiviral infection and the differentiating ES cells analyzed for lens marker expression. Transfection of mES cells with Pax6 or Six3 but not with other genes induced the expression of lens cell markers and up-regulated GFP reporter expression in Pax6-GFP mES cells by 3 days post-transfection. By 7 days post-transfection, mES cell cultures exhibited a>10-fold increase over controls in the number of colonies expressing γA-crystallin, a lens fiber cell differentiation marker. RT-PCR and immunostaining revealed induction of additional lens epithelial or fiber cell differentiation markers including Foxe3, Prox1, α- and β-crystallins, and Tdrd7. Moreover, γA-crystallin- or Prox1-expressing lentoid bodies formed by 30 days in culture. In hES cells, Pax6 or Six3 lentiviral vectors also induced lens marker expression. mES cells that express lens markers reside close to but are distinct from the Pax6 or Six3 transduced cells, suggesting that the latter induce nearby undifferentiated ES cells to adopt a lens fate by non-cell autonomous mechanisms. In sum, we describe a novel mES cell GFP reporter line that is useful for monitoring induction of lens fate, and demonstrate that Pax6 or Six3 is sufficient to induce ES cells to adopt a lens fate, potentially via non-cell autonomous mechanisms. These findings should facilitate investigations of lens development.Publication Gestational carriers: A viable alternative for women with medical contraindications to pregnancy*(2013) Anchan, Raymond; Missmer, Stacey; Correia, Katharine F.; Ginsburg, ElizabethObjective: Compare the efficacy of surrogate or gestational carrier (GC) cycles to that of autologous in vitro fertilization (IVF)/intracytoplasmic sperm injections (ICSI) in patients with gynecologic or medical co-morbidities contraindicative to pregnancy. Design: Retrospective cohort study. Setting: Infertility patients from a single university hospital-based program from 1998-2009. Intervention(s) 128 GC cycles from 80 intended parents were identified and compared with 15,311 IVF or ICSI cycles. Main Outcome Measure(s) The peak estradiol (E2), number of oocytes retrieved, cycle cancellation, ongoing pregnancy, and live-birth were compared between GCs and autologous IVF carriers. Indications for GC use were also identified. Multiple cycles contributed by the same patient were accounted for using multivariable generalized estimating equations and two-sided Wald p-values. Results: Uterine factors (67%) was the most common indication for using a GC, followed by non-gynecologic medical conditions including coagulopathies (13%), end stage renal disease (10%), cardiovascular disease (5%) and cancer (5%). Adjusting for age, ovulation induction in GC cycles had similar peak E2 levels and number of oocytes retrieved relative to IVF cycles (p = 0.23 and 0.43, respectively). Clinical pregnancy (49% vs. 42%, p = 0.28) and live-birth rates (31% vs. 32%, p = 0.74) were also comparable. A sub-analysis of GC cycles in those women with uterine factor indications, demonstrated significantly higher clinical pregnancy rates (OR = 2.0; CI = 1.2 - 3.5) with 60% greater odds of live-birth relative to IVF/ICSI cycles, however this odds was not statistically significant for differences in live-birth (CI = 0.9 - 2.9). Conclusions: GCs are a viable alternative to start families for patients with medical co-morbidities precluding pregnancy.Publication Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm(Nature Publishing Group, 2016) Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R.; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond; Mutter, George; Ozkan, Mihrimah; Ozkan, Cengiz S.; Demirci, UtkanCarbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1–25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.Publication Efficient Differentiation of Steroidogenic and Germ-Like Cells from Epigenetically-Related iPSCs Derived from Ovarian Granulosa Cells(Public Library of Science, 2015) Anchan, Raymond; Gerami-Naini, Behzad; Lindsey, Jennifer S.; Ho, Joshua W. K.; Kiezun, Adam; Lipskind, Shane; Ng, Nicholas; LiCausi, Joseph A.; Kim, Chloe S.; Brezina, Paul; Tuschl, Thomas; Maas, Richard; Kearns, William G.; Williams, ZevTo explore restoration of ovarian function using epigenetically-related, induced pluripotent stem cells (iPSCs), we functionally evaluated the epigenetic memory of novel iPSC lines, derived from mouse and human ovarian granulosa cells (GCs) using c-Myc, Klf4, Sox2 and Oct4 retroviral vectors. The stem cell identity of the mouse and human GC-derived iPSCs (mGriPSCs, hGriPSCs) was verified by demonstrating embryonic stem cell (ESC) antigen expression using immunocytochemistry and RT-PCR analysis, as well as formation of embryoid bodies (EBs) and teratomas that are capable of differentiating into cells from all three germ layers. GriPSCs’ gene expression profiles associate more closely with those of ESCs than of the originating GCs as demonstrated by genome-wide analysis of mRNA and microRNA. A comparative analysis of EBs generated from three different mouse cell lines (mGriPSCs; fibroblast-derived iPSC, mFiPSCs; G4 embryonic stem cells, G4 mESCs) revealed that differentiated mGriPSC-EBs synthesize 10-fold more estradiol (E2) than either differentiated FiPSC- or mESC-EBs under identical culture conditions. By contrast, mESC-EBs primarily synthesize progesterone (P4) and FiPSC-EBs produce neither E2 nor P4. Differentiated mGriPSC-EBs also express ovarian markers (AMHR, FSHR, Cyp19a1, ER and Inha) as well as markers of early gametogenesis (Mvh, Dazl, Gdf9, Boule and Zp1) more frequently than EBs of the other cell lines. These results provide evidence of preferential homotypic differentiation of mGriPSCs into ovarian cell types. Collectively, our data support the hypothesis that generating iPSCs from the desired tissue type may prove advantageous due to the iPSCs’ epigenetic memory.Publication MATR3 disruption in human and mouse associated with bicuspid aortic valve, aortic coarctation and patent ductus arteriosus(Oxford University Press, 2015) Quintero-Rivera, Fabiola; Xi, Qiongchao J.; Keppler-Noreuil, Kim M.; Lee, Ji Hyun; Higgins, Anne W.; Anchan, Raymond; Roberts, Amy; Seong, Ihn; Fan, Xueping; Lage, Kasper; Lu, Lily Y.; Tao, Joanna; Hu, Xuchen; Berezney, Ronald; Gelb, Bruce D.; Kamp, Anna; Moskowitz, Ivan P.; Lacro, Ronald V.; Lu, Weining; Morton, Cynthia; Gusella, James; Maas, Richard L.Cardiac left ventricular outflow tract (LVOT) defects represent a common but heterogeneous subset of congenital heart disease for which gene identification has been difficult. We describe a 46,XY,t(1;5)(p36.11;q31.2)dn translocation carrier with pervasive developmental delay who also exhibited LVOT defects, including bicuspid aortic valve (BAV), coarctation of the aorta (CoA) and patent ductus arteriosus (PDA). The 1p breakpoint disrupts the 5′ UTR of AHDC1, which encodes AT-hook DNA-binding motif containing-1 protein, and AHDC1-truncating mutations have recently been described in a syndrome that includes developmental delay, but not congenital heart disease [Xia, F., Bainbridge, M.N., Tan, T.Y., Wangler, M.F., Scheuerle, A.E., Zackai, E.H., Harr, M.H., Sutton, V.R., Nalam, R.L., Zhu, W. et al. (2014) De Novo truncating mutations in AHDC1 in individuals with syndromic expressive language delay, hypotonia, and sleep apnea. Am. J. Hum. Genet., 94, 784–789]. On the other hand, the 5q translocation breakpoint disrupts the 3′ UTR of MATR3, which encodes the nuclear matrix protein Matrin 3, and mouse Matr3 is strongly expressed in neural crest, developing heart and great vessels, whereas Ahdc1 is not. To further establish MATR3 3′ UTR disruption as the cause of the proband's LVOT defects, we prepared a mouse Matr3Gt-ex13 gene trap allele that disrupted the 3′ portion of the gene. Matr3Gt-ex13 homozygotes are early embryo lethal, but Matr3Gt-ex13 heterozygotes exhibit incompletely penetrant BAV, CoA and PDA phenotypes similar to those in the human proband, as well as ventricular septal defect (VSD) and double-outlet right ventricle (DORV). Both the human MATR3 translocation breakpoint and the mouse Matr3Gt-ex13 gene trap insertion disturb the polyadenylation of MATR3 transcripts and alter Matrin 3 protein expression, quantitatively or qualitatively. Thus, subtle perturbations in Matrin 3 expression appear to cause similar LVOT defects in human and mouse.Publication Hereditary leiomyomatosis and renal cell cancer: Cutaneous lesions & atypical fibroids(Elsevier, 2017) Bortoletto, Pietro; Lindsey, Jennifer L.; Yuan, Liping; Quade, Bradley; Gargiulo, Antonio; Morton, Cynthia; Stewart, Elizabeth A.; Anchan, RaymondObjective: To report a diagnosis of hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome following initial presentation with multiple cutaneous lesions. Design: Case report. Design classification N/A. Setting: Academic tertiary care center. Patient(s) 27-year-old nulligravid woman who presented with multiple red-brown lesions on her skin found to have cutaneous and uterine leiomyoma. Intervention(s) Biopsy of cutaneous lesions and fertility sparing robot-assisted laparoscopic myomectomy (RALM). Main outcome measures(s) Histological assessment of uterine leiomyoma. Results(s) Pathologic examination of uterine leiomyoma revealed diffuse atypia and fumarate hydratase loss phenotype concerning for genetic syndrome. Follow-up DNA sequencing via Sanger sequencing confirmed a pathogenetic R2333H mutation consistent with HLRCC. Conclusion(s) Consideration of HLRCC on differential diagnosis when patients present with cutaneous nodules and atypical or early onset uterine leiomyoma provides opportunity for early surveillance, family member testing, and more thoughtful surgical planning. Precis 27-year-old woman with multiple cutaneous lesions is found to have uterine leiomyomas and undergoes robotic myomectomy. Genetic testing of uterine leiomyomas reveals mutation in fumarate hydratase, etiologic in hereditary leiomyomatosis and renal cell cancer (HLRCC).