Person:
Eggert, Ulrike

Loading...
Profile Picture

Email Address

AA Acceptance Date

Birth Date

Research Projects

Organizational Units

Job Title

Last Name

Eggert

First Name

Ulrike

Name

Eggert, Ulrike

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    The Chromosomal Passenger Complex Activates Polo Kinase at Centromeres
    (Public Library of Science, 2012) Carmena, Mar; Pinson, Xavier; Platani, Melpi; Salloum, Zeina; Xu, Zhenjie; MacIsaac, Fiona; Ogawa, Hiromi; Glover, David M.; Archambault, Vincent; Earnshaw, William C.; Clark, Anthony; Eggert, Ulrike
    The coordinated activities at centromeres of two key cell cycle kinases, Polo and Aurora B, are critical for ensuring that the two sister kinetochores of each chromosome are attached to microtubules from opposite spindle poles prior to chromosome segregation at anaphase. Initial attachments of chromosomes to the spindle involve random interactions between kinetochores and dynamic microtubules, and errors occur frequently during early stages of the process. The balance between microtubule binding and error correction (e.g., release of bound microtubules) requires the activities of Polo and Aurora B kinases, with Polo promoting stable attachments and Aurora B promoting detachment. Our study concerns the coordination of the activities of these two kinases in vivo. We show that INCENP, a key scaffolding subunit of the chromosomal passenger complex (CPC), which consists of Aurora B kinase, INCENP, Survivin, and Borealin/Dasra B, also interacts with Polo kinase in Drosophila cells. It was known that Aurora A/Bora activates Polo at centrosomes during late G2. However, the kinase that activates Polo on chromosomes for its critical functions at kinetochores was not known. We show here that Aurora B kinase phosphorylates Polo on its activation loop at the centromere in early mitosis. This phosphorylation requires both INCENP and Aurora B activity (but not Aurora A activity) and is critical for Polo function at kinetochores. Our results demonstrate clearly that Polo kinase is regulated differently at centrosomes and centromeres and suggest that INCENP acts as a platform for kinase crosstalk at the centromere. This crosstalk may enable Polo and Aurora B to achieve a balance wherein microtubule mis-attachments are corrected, but proper attachments are stabilized allowing proper chromosome segregation.
  • Publication
    The Natural Product Cucurbitacin E Inhibits Depolymerization of Actin Filaments
    (American Chemical Society (ACS), 2011) Sorensen, Pia; Iacob, Roxana, E.; Fritzsche, Marco; Engen, John R.; Brieher, William M.; Charras, Guillaume; Eggert, Ulrike
    Although small molecule actin modulators have been widely used as research tools, only one cell-permeable small molecule inhibitor of actin depolymerization (jasplakinolide) is commercially available. We report that the natural product cucurbitacin E inhibits actin depolymerization and show that its mechanism of action is different from jasplakinolide. In assays using pure fluorescently labeled actin, cucurbitacin E specifically affects depolymerization without affecting polymerization. It inhibits actin depolymerization at substoichiometric concentrations up to 1:6 cucurbitacin E:actin. Cucurbitacin E specifically binds to filamentous actin (F-actin) forming a covalent bond at residue Cys257, but not to monomeric actin (G-actin). On the basis of its compatibility with phalloidin staining, we show that cucurbitacin E occupies a different binding site on actin filaments. Using loss of fluorescence after localized photoactivation, we found that cucurbitacin E inhibits actin depolymerization in live cells. Cucurbitacin E is a widely available plant-derived natural product, making it a useful tool to study actin dynamics in cells and actin-based processes such as cytokinesis.